Display options
Share it on

Front Immunol. 2017 May 29;8:609. doi: 10.3389/fimmu.2017.00609. eCollection 2017.

Fatty Acid Oxidation Compensates for Lipopolysaccharide-Induced Warburg Effect in Glucose-Deprived Monocytes.

Frontiers in immunology

Nora Raulien, Kathleen Friedrich, Sarah Strobel, Stefan Rubner, Sven Baumann, Martin von Bergen, Antje Körner, Martin Krueger, Manuela Rossol, Ulf Wagner

Affiliations

  1. Division of Rheumatology, Department of Internal Medicine, University of Leipzig, Leipzig, Germany.
  2. Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
  3. Faculty of Biosciences, Pharmacy and Psychology, Institute of Pharmacy, University of Leipzig, Leipzig, Germany.
  4. Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany.
  5. Hospital for Children and Adolescents, Department of Women and Child Health, University Hospitals, University of Leipzig, Leipzig, Germany.
  6. Institute of Anatomy, University of Leipzig, Leipzig, Germany.

PMID: 28611773 PMCID: PMC5447039 DOI: 10.3389/fimmu.2017.00609

Abstract

Monocytes enter sites of microbial or sterile inflammation as the first line of defense of the immune system and initiate pro-inflammatory effector mechanisms. We show that activation with bacterial lipopolysaccharide (LPS) induces them to undergo a metabolic shift toward aerobic glycolysis, similar to the Warburg effect observed in cancer cells. At sites of inflammation, however, glucose concentrations are often drastically decreased, which prompted us to study monocyte function under conditions of glucose deprivation and abrogated Warburg effect. Experiments using the Seahorse Extracellular Flux Analyzer revealed that limited glucose supply shifts monocyte metabolism toward oxidative phosphorylation, fueled largely by fatty acid oxidation at the expense of lipid droplets. While this metabolic state appears to provide sufficient energy to sustain functional properties like cytokine secretion, migration, and phagocytosis, it cannot prevent a rise in the AMP/ATP ratio and a decreased respiratory burst. The molecular trigger mediating the metabolic shift and the functional consequences is activation of AMP-activated protein kinase (AMPK). Taken together, our results indicate that monocytes are sufficiently metabolically flexible to perform pro-inflammatory functions at sites of inflammation despite glucose deprivation and inhibition of the LPS-induced Warburg effect. AMPK seems to play a pivotal role in orchestrating these processes during glucose deprivation in monocytes.

Keywords: Warburg effect; fatty acid oxidation; glucose deprivation; inflammation; monocytes

References

  1. Biochem J. 1986 Oct 1;239(1):121-5 - PubMed
  2. Ann N Y Acad Sci. 2011 Jun;1228:29-38 - PubMed
  3. Clin Rheumatol. 2011 Dec;30(12):1631-9 - PubMed
  4. J Immunol. 2010 Jul 1;185(1):605-14 - PubMed
  5. Semin Arthritis Rheum. 2006 Jun;35(6):368-78 - PubMed
  6. Nat Commun. 2012;3:1329 - PubMed
  7. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62 - PubMed
  8. Nat Immunol. 2012 Jan 29;13(3):255-63 - PubMed
  9. Science. 2010 Dec 3;330(6009):1344-8 - PubMed
  10. Blood. 2010 Jun 10;115(23):4742-9 - PubMed
  11. Science. 2001 Apr 20;292(5516):504-7 - PubMed
  12. Nature. 2006 Mar 9;440(7081):237-41 - PubMed
  13. FEBS Lett. 2004 Aug 27;573(1-3):219-25 - PubMed
  14. Am J Med Sci. 2014 Sep;348(3):186-90 - PubMed
  15. J Immunol. 1997 Aug 1;159(3):1451-8 - PubMed
  16. Nat Rev Immunol. 2016 Nov;16(11):661-675 - PubMed
  17. J Biol Chem. 2014 Mar 14;289(11):7884-96 - PubMed
  18. J Immunol. 2010 Feb 1;184(3):1200-9 - PubMed
  19. Respiration. 1979;38(2):112-20 - PubMed
  20. Nat Cell Biol. 2011 Feb;13(2):132-41 - PubMed
  21. In Vitro. 1984 Jan;20(1):33-7 - PubMed
  22. Respir Care. 2014 Apr;59(4):e55-9 - PubMed
  23. Eur J Immunol. 2015 Sep;45(9):2504-16 - PubMed
  24. Dev Cell. 2015 Mar 23;32(6):678-92 - PubMed
  25. Nat Rev Immunol. 2016 Sep;16(9):553-65 - PubMed
  26. Ann Neurol. 1980 Jan;7(1):86-91 - PubMed
  27. J Lipid Res. 2007 Apr;48(4):837-47 - PubMed
  28. Cell Metab. 2016 Apr 12;23 (4):649-62 - PubMed
  29. Nat Commun. 2014 Jul 14;5:4436 - PubMed
  30. J Biol Chem. 2010 Nov 26;285(48):37503-12 - PubMed
  31. Cell. 2008 Sep 5;134(5):703-7 - PubMed
  32. J Immunol. 2015 Jun 1;194(11):5174-86 - PubMed
  33. J Biol Chem. 2014 Jan 31;289(5):3001-12 - PubMed
  34. Cell Metab. 2012 Jun 6;15(6):813-26 - PubMed
  35. Science. 2014 Sep 26;345(6204):1251086 - PubMed
  36. Ann Rheum Dis. 1975 Oct;35(5):398-406 - PubMed
  37. Proteomics. 2013 Nov;13(21):3211-21 - PubMed
  38. J Immunol. 2007 Sep 15;179(6):4239-48 - PubMed
  39. Nature. 2013 Apr 11;496(7444):238-42 - PubMed
  40. Am J Physiol Heart Circ Physiol. 2014 Oct 15;307(8):H1120-33 - PubMed
  41. Nat Commun. 2015 May 27;6:7176 - PubMed
  42. Am Rev Respir Dis. 1968 Feb;97(2):302-5 - PubMed

Publication Types