Display options
Share it on

Sci Rep. 2017 May 26;7(1):2440. doi: 10.1038/s41598-017-02678-0.

Artefact-free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles.

Scientific reports

Tânia Ribeiro, Carlos Baleizão, José Paulo S Farinha

Affiliations

  1. Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico - Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
  2. Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico - Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. [email protected].

PMID: 28550301 PMCID: PMC5446421 DOI: 10.1038/s41598-017-02678-0

Abstract

Metal nanoparticles can either quench or enhance the emission of dyes in their vicinity, but the precise measurement and understanding of this effect is still hindered by experimental artifacts, especially for particles in colloidal dispersion. Here, we introduce a new methodology to correct the inner filter effect of the metal on the dye emission. To test the method, we developed new hybrid nanoparticles with a gold core and a silica shell of precise thickness (tuned from 7 to 13 nm), with a high quantum yield perylenediimide dye on the surface. This novel approach effectively avoids fluorescence quenching, allowing us to measure emission enhancements of 5 to 30 times, with no change on the dye fluorescence lifetime. Being able to measure the emission enhancement in dye-metal hybrid nanoparticles in dispersion, free from inner filter and quenching artifacts, offers excellent prospects to guide the development of more efficient fluorescent probes, sensors and photonic devices.

References

  1. Adv Mater. 2010 Mar 19;22(11):1182-95 - PubMed
  2. Langmuir. 2013 Feb 5;29(5):1584-91 - PubMed
  3. Chem Commun (Camb). 2007 Jan 21;(3):248-50 - PubMed
  4. Nat Mater. 2011 Nov 23;10(12):911-21 - PubMed
  5. ACS Nano. 2013 Aug 27;7(8):6636-48 - PubMed
  6. Angew Chem Int Ed Engl. 2013 Jan 21;52(4):1217-21 - PubMed
  7. Nanoscale. 2014 May 21;6(10):4966-84 - PubMed
  8. Langmuir. 2012 Jan 10;28(1):883-8 - PubMed
  9. Chem Soc Rev. 2015 Jan 7;44(1):40-57 - PubMed
  10. Nano Lett. 2007 Feb;7(2):496-501 - PubMed
  11. Nature. 2009 Aug 27;460(7259):1110-2 - PubMed
  12. Nano Lett. 2008 Dec;8(12):4347-52 - PubMed
  13. Nano Lett. 2007 Oct;7(10):3157-64 - PubMed
  14. ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2700-8 - PubMed
  15. Acc Chem Res. 2008 Dec;41(12):1578-86 - PubMed
  16. ACS Appl Mater Interfaces. 2012 Mar;4(3):1747-51 - PubMed
  17. J Fluoresc. 2007 Nov;17(6):811-6 - PubMed
  18. Anal Chem. 2011 Feb 15;83(4):1307-14 - PubMed
  19. Chem Rev. 2011 Jun 8;111(6):3913-61 - PubMed
  20. Biomed Opt Express. 2011 Jun 1;2(6):1727-33 - PubMed
  21. Nanoscale. 2013 Jan 7;5(1):239-45 - PubMed
  22. ACS Nano. 2014 Aug 26;8(8):8392-406 - PubMed
  23. Nano Lett. 2015 Apr 8;15(4):2662-70 - PubMed
  24. Nanotechnology. 2011 Oct 14;22(41):415202 - PubMed
  25. Phys Chem Chem Phys. 2013 Oct 14;15(38):15709-26 - PubMed
  26. Nat Mater. 2010 Mar;9(3):193-204 - PubMed
  27. Nature. 2011 Jan 20;469(7330):385-8 - PubMed
  28. Langmuir. 2009 Dec 15;25(24):13894-9 - PubMed
  29. Chem Rev. 2012 May 9;112(5):2739-79 - PubMed
  30. Nat Commun. 2014 Jun 23;5:4236 - PubMed
  31. Acc Chem Res. 2008 Dec;41(12):1721-30 - PubMed
  32. ACS Nano. 2014 May 27;8(5):4440-9 - PubMed
  33. Phys Rev Lett. 2006 Mar 24;96(11):113002 - PubMed
  34. Anal Chem. 2012 Oct 16;84(20):8656-62 - PubMed

Publication Types