Display options
Share it on

Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Jan;2(1):76-84. doi: 10.1016/j.bpsc.2016.09.002.

Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data Exchange.

Biological psychiatry. Cognitive neuroscience and neuroimaging

Neil D Woodward, Monica Giraldo-Chica, Baxter Rogers, Carissa J Cascio

Affiliations

  1. Department of Psychiatry & Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN.
  2. Vanderbilt University Institute of Imaging Science, Nashville, TN.

PMID: 28584881 PMCID: PMC5455796 DOI: 10.1016/j.bpsc.2016.09.002

Abstract

BACKGROUND: Individuals with autism spectrum disorder (ASD) exhibit differences in basic sensorimotor processing as well as general cortical excitability. These observations converge to implicate thalamocortical connectivity as a potential unifying neural mechanism. The goal of this study was to clarify mixed findings on thalamocortical functional connectivity in a large sample of individuals with ASD.

METHODS: Using the Autism Brain Imaging Data Exchange (ABIDE), we examined thalamocortical functional connectivity in 228 individuals with ASD and a matched comparison group of 228 typically developing individuals. In order to fully characterize thalamocortical functional networks, we employed complementary seed-based approaches that examined connectivity of major cortical divisions (e.g. prefrontal cortex, temporal lobe) with the thalamus and whole-brain connectivity of specific thalamic sub-regions.

RESULTS: Prefrontal cortex, temporal lobe, and sensorimotor cortex exhibited hyper-connectivity with the thalamus in ASD. In the whole-brain analysis, hyper-connectivity of several thalamic seeds included multiple cortical areas, but tended to converge in temporal cortical areas, including the temporoparietal junction. Follow-up analyses of age effects revealed that the connectivity abnormalities in ASD were more pronounced in adolescents compared to children and adults.

CONCLUSIONS: These results confirm previous findings of temporal and motor thalamocortical hyper-connectivity in ASD, and extend them to include somatosensory and prefrontal cortex. While not directly addressable with the data available in ABIDE, this widespread hyper-connectivity could theoretically account for sensorimotor symptoms and general cortical excitability in ASD. Future studies should target comprehensive clinical and behavioral characterization in combination with functional connectivity in order to explore this possibility.

Keywords: adolescents; autism; functional connectivity; resting state; temporoparietal; thalamus

References

  1. Neurosci Lett. 2014 May 7;568:50-5 - PubMed
  2. J Autism Dev Disord. 2015 Mar;45(3):795-804 - PubMed
  3. J Autism Dev Disord. 2000 Jun;30(3):205-23 - PubMed
  4. Neuroimage. 2007 Aug 1;37(1):90-101 - PubMed
  5. Hum Brain Mapp. 2001 Nov;14(3):129-39 - PubMed
  6. Mol Psychiatry. 2014 Jun;19(6):659-67 - PubMed
  7. Neuroreport. 2006 Nov 6;17(16):1687-90 - PubMed
  8. J Autism Dev Disord. 2016 May;46(5):1528-37 - PubMed
  9. Hum Brain Mapp. 2015 Nov;36(11):4497-511 - PubMed
  10. J Autism Dev Disord. 2009 Jul;39(7):1087-91 - PubMed
  11. Dev Neuropsychol. 2009;34(6):780-800 - PubMed
  12. J Neurophysiol. 2008 Oct;100(4):1740-8 - PubMed
  13. Front Syst Neurosci. 2010 May 18;4:10 - PubMed
  14. Neuroimage. 2012 Feb 1;59(3):2142-54 - PubMed
  15. Biol Psychiatry. 2007 Feb 15;61(4):482-6 - PubMed
  16. Clin Psychol Sci. 2015 May;3(3):349-371 - PubMed
  17. Genes Brain Behav. 2003 Oct;2(5):255-67 - PubMed
  18. Soc Cogn Affect Neurosci. 2014 Jan;9(1):98-105 - PubMed
  19. Neuron. 1996 Nov;17(5):823-35 - PubMed
  20. Brain Topogr. 2015 Nov;28(6):895-903 - PubMed
  21. Biol Psychiatry. 2016 Jun 15;79(12):1016-25 - PubMed
  22. Epilepsy Behav. 2015 Jun;47:202-6 - PubMed
  23. Prog Brain Res. 2005;149:107-26 - PubMed
  24. Trends Neurosci. 2015 Jan;38(1):3-12 - PubMed
  25. Soc Cogn Affect Neurosci. 2015 Aug;10(8):1074-83 - PubMed
  26. Res Autism Spectr Disord. 2012 Winter;6(1):337-344 - PubMed
  27. J Autism Dev Disord. 1994 Oct;24(5):659-85 - PubMed
  28. Neuroimage. 2014 Aug 1;96:22-35 - PubMed
  29. Neuropsychology. 2012 Mar;26(2):165-71 - PubMed
  30. Brain. 2013 Jun;136(Pt 6):1942-55 - PubMed
  31. Neuroimage Clin. 2014 Oct 13;6:379-87 - PubMed
  32. J Neurophysiol. 2015 Apr 1;113(7):1989-2001 - PubMed
  33. Cell Rep. 2013 Nov 14;5(3):738-47 - PubMed
  34. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5469-74 - PubMed
  35. Neuroscience. 2016 May 3;321:24-41 - PubMed
  36. J Neurosci. 2001 Feb 1;21(3):884-96 - PubMed
  37. Autism Res. 2010 Apr;3(2):78-87 - PubMed
  38. Neuropsychopharmacology. 2011 May;36(6):1127-41 - PubMed
  39. Psychiatry Res. 2007 Nov 15;156(2):117-27 - PubMed
  40. Neuroimage. 2011 Jan 1;54(1):697-704 - PubMed
  41. Mol Psychiatry. 1997 May;2(3):247-50 - PubMed
  42. Neurosci Biobehav Rev. 2015 Apr;51:263-75 - PubMed
  43. J Autism Dev Disord. 2009 May;39(5):693-705 - PubMed
  44. J Autism Dev Disord. 2015 Sep;45(9):3030-40 - PubMed
  45. Neuroimage Clin. 2012 Nov 16;2:79-94 - PubMed
  46. JAMA Psychiatry. 2015 Aug;72(8):767-77 - PubMed
  47. Neuron. 2015 Aug 19;87(4):684-98 - PubMed
  48. Brain Connect. 2012;2(3):125-41 - PubMed
  49. Biol Psychiatry. 2011 May 1;69(9):847-56 - PubMed
  50. JAMA Psychiatry. 2015 Aug;72(8):743-4 - PubMed
  51. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3107-12 - PubMed
  52. Cereb Cortex. 2010 May;20(5):1187-94 - PubMed

Publication Types

Grant support