Display options
Share it on

Transl Vis Sci Technol. 2017 May 22;6(3):5. doi: 10.1167/tvst.6.3.5. eCollection 2017 May.

Next Generation PERG Method: Expanding the Response Dynamic Range and Capturing Response Adaptation.

Translational vision science & technology

Pedro Monsalve, Giacinto Triolo, Jonathon Toft-Nielsen, Jorge Bohorquez, Amanda D Henderson, Rafael Delgado, Edward Miskiel, Ozcan Ozdamar, William J Feuer, Vittorio Porciatti

Affiliations

  1. Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
  2. Jorvec Corp., Miami, FL, USA.
  3. Department of Biomedical Engineering, University of Miami, Miami, FL, USA.
  4. Johns Hopkins Wilmer Eye Institute, Columbia, MD, USA.
  5. Intelligent Hearing Systems Corp., Miami, FL, USA.

PMID: 28553559 PMCID: PMC5444497 DOI: 10.1167/tvst.6.3.5

Abstract

PURPOSE: To compare a new method for steady-state pattern electroretinogram (PERGx) with a validated method (PERGLA) in normal controls and in patients with optic neuropathy.

METHODS: PERGx and PERGLA were recorded in a mixed population (

RESULTS: PERGLA and PERGx amplitudes and latencies were correlated (Amplitude

CONCLUSIONS: The PERGx high signal-to-noise ratio may allow meaningful recording in advanced stages of optic nerve disorders. In addition, it quantifies response adaptation, which may be selectively altered in glaucoma and optic neuropathy.

TRANSLATIONAL RELEVANCE: A new PERG method with increased dynamic range allows recording of retinal ganglion cell function in advanced stages of optic nerve disorders. It also quantifies the response decline during the test, an autoregulatory adaptation to metabolic challenge that decreases with age and presence of disease.

Keywords: glaucoma; neural adaptation; non-arteritic ischemic optic neuropathy; pattern electroretinogram; signal-to-noise ratio

References

  1. Nat Neurosci. 2000 Mar;3(3):259-63 - PubMed
  2. Prog Retin Eye Res. 2001 Jul;20(4):531-61 - PubMed
  3. Ophthalmology. 2002 Jul;109(7):1350-61 - PubMed
  4. Doc Ophthalmol. 2002 Nov;105(3):281-9 - PubMed
  5. Vision Res. 1992 Jul;32(7):1199-209 - PubMed
  6. Ophthalmology. 2004 Jan;111(1):161-8 - PubMed
  7. Ophthalmology. 2005 Jan;112(1):10-9 - PubMed
  8. Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1296-302 - PubMed
  9. Ophthalmology. 1992 Apr;99(4):522-30 - PubMed
  10. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2411-8 - PubMed
  11. Clin Neurophysiol. 2006 May;117(5):1158-66 - PubMed
  12. Ophthalmology. 2007 Apr;114(4):671-9 - PubMed
  13. Ophthalmology. 2008 Jun;115(6):957-63 - PubMed
  14. Optom Vis Sci. 2008 Jun;85(6):386-95 - PubMed
  15. Eur J Neurol. 2008 Aug;15(8):839-45 - PubMed
  16. Vision Res. 2009 Mar;49(5):505-13 - PubMed
  17. Ophthalmology. 2009 Mar;116(3):437-43 - PubMed
  18. J Glaucoma. 2009 Aug;18(6):437-42 - PubMed
  19. Invest Ophthalmol Vis Sci. 2011 Jun 16;52(7):4300-6 - PubMed
  20. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:2009-12 - PubMed
  21. Doc Ophthalmol. 2013 Feb;126(1):1-7 - PubMed
  22. Invest Ophthalmol Vis Sci. 2013 Mar 28;54(3):2346-52 - PubMed
  23. J Glaucoma. 2014 Oct-Nov;23(8):494-500 - PubMed
  24. Cell Tissue Res. 2013 Aug;353(2):287-96 - PubMed
  25. Clin Neurophysiol. 2013 Aug;124(8):1652-8 - PubMed
  26. J Vis. 2013 Jun 11;13(7):null - PubMed
  27. Doc Ophthalmol. 2013 Dec;127(3):227-38 - PubMed
  28. Invest Ophthalmol Vis Sci. 2014 Apr 07;55(4):2173-9 - PubMed
  29. Clin Neurophysiol. 2014 Oct;125(10):2079-89 - PubMed
  30. Invest Ophthalmol Vis Sci. 2014 Dec 04;55(12):8560-70 - PubMed
  31. Exp Eye Res. 2015 Dec;141:164-70 - PubMed
  32. Optom Vis Sci. 1989 Apr;66(4):214-7 - PubMed
  33. Science. 1967 Jul 7;157(3784):92-4 - PubMed
  34. Invest Ophthalmol Vis Sci. 1981 Sep;21(3):490-3 - PubMed
  35. Science. 1981 Feb 27;211(4485):953-5 - PubMed

Publication Types

Grant support