Display options
Share it on

Beilstein J Org Chem. 2017 May 18;13:938-951. doi: 10.3762/bjoc.13.95. eCollection 2017.

Interactions between shape-persistent macromolecules as probed by AFM.

Beilstein journal of organic chemistry

Johanna Blass, Jessica Brunke, Franziska Emmerich, Cédric Przybylski, Vasil M Garamus, Artem Feoktystov, Roland Bennewitz, Gerhard Wenz, Marcel Albrecht

Affiliations

  1. INM-Leibniz-Institute for New Materials, Saarland University, Campus D 2.2, D-66123 Saarbrücken, Germany.
  2. Physics Department, Saarland University, Campus D 2.2, D-66123 Saarbrücken, Germany.
  3. Organic Macromolecular Chemistry, Saarland University, Campus C 4.2, D-66123 Saarbrücken, Germany.
  4. UPMC, IPCM-CNRS UMR 8232, Sorbonne Universités, 75252 Paris Cedex 05, France.
  5. Helmholtz-Zentrum Geesthacht (HZG), Centre for Materials and Costal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
  6. Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany.

PMID: 28684975 PMCID: PMC5480325 DOI: 10.3762/bjoc.13.95

Abstract

Water-soluble shape-persistent cyclodextrin (CD) polymers with amino-functionalized end groups were prepared starting from diacetylene-modified cyclodextrin monomers by a combined Glaser coupling/click chemistry approach. Structural perfection of the neutral CD polymers and inclusion complex formation with ditopic and monotopic guest molecules were proven by MALDI-TOF and UV-vis measurements. Small-angle neutron and X-ray (SANS/SAXS) scattering experiments confirm the stiffness of the polymer chains with an apparent contour length of about 130 Å. Surface modification of planar silicon wafers as well as AFM tips was realized by covalent bound formation between the terminal amino groups of the CD polymer and a reactive isothiocyanate-silane monolayer. Atomic force measurements of CD polymer decorated surfaces show enhanced supramolecular interaction energies which can be attributed to multiple inclusion complexes based on the rigidity of the polymer backbone and the regular configuration of the CD moieties. Depending on the geometrical configuration of attachment anisotropic adhesion characteristics of the polymer system can be distinguished between a peeling and a shearing mechanism.

Keywords: AFM; cyclodextrin; inclusion complexes; molecular recognition; polyconjugated polymers; shape persistent polymers

References

  1. Phys Chem Chem Phys. 2017 Feb 15;19(7):5239-5245 - PubMed
  2. Org Biomol Chem. 2011 May 7;9(9):3188-98 - PubMed
  3. J Am Chem Soc. 2013 May 15;135(19):7288-95 - PubMed
  4. Langmuir. 2015 Oct 6;31(39):10708-16 - PubMed
  5. J Am Chem Soc. 2014 Feb 5;136(5):1742-5 - PubMed
  6. Science. 2012 Feb 17;335(6070):813-7 - PubMed
  7. Chemistry. 2008;14(24):7202-11 - PubMed
  8. Langmuir. 2012 Jul 3;28(26):10020-5 - PubMed
  9. Chemistry. 2012 Jun 25;18(26):8180-9 - PubMed
  10. Chem Rev. 1998 Jul 30;98(5):1875-1918 - PubMed
  11. Nat Struct Biol. 1999 Apr;6(4):346-9 - PubMed
  12. Chem Rec. 2011 Sep;11(5):269-83 - PubMed
  13. J Am Chem Soc. 2009 Nov 11;131(44):16004-5 - PubMed
  14. J Org Chem. 2005 Oct 14;70(21):8522-6 - PubMed
  15. Chem Rev. 2016 Feb 24;116(4):2414-77 - PubMed
  16. J Am Chem Soc. 2009 Dec 23;131(50):18046-7 - PubMed
  17. Langmuir. 2014 Jun 3;30(21):6142-50 - PubMed
  18. J Phys Colloid Chem. 1947 Jan;51(1):18-32 - PubMed
  19. Chemistry. 2004 Mar 19;10(6):1320-9 - PubMed
  20. J Am Chem Soc. 2011 Jul 20;133(28):10849-57 - PubMed
  21. Science. 1999 Jan 29;283(5402):661-3 - PubMed
  22. Langmuir. 2006 Feb 14;22(4):1749-57 - PubMed
  23. Chem Soc Rev. 2014 Mar 21;43(6):1934-47 - PubMed
  24. Chem Rev. 2015 Aug 12;115(15):7196-239 - PubMed
  25. J Phys Condens Matter. 2009 May 13;21(19):195801 - PubMed
  26. J Mater Chem B. 2015 Mar 7;3(9):1801-1812 - PubMed
  27. Chemistry. 2008;14(1):136-42 - PubMed
  28. Langmuir. 2009 Jun 16;25(12):6627-32 - PubMed
  29. Acc Chem Res. 2014 Jul 15;47(7):2128-40 - PubMed
  30. Macromol Rapid Commun. 2016 Jan;37(1):86-92 - PubMed
  31. Chem Rev. 2015 Nov 11;115(21):11718-940 - PubMed
  32. Chem Commun (Camb). 2006 Sep 21;(35):3702-4 - PubMed
  33. Chem Commun (Camb). 2014 Jan 21;50(6):658-60 - PubMed
  34. Chem Commun (Camb). 2015 Feb 4;51(10):1830-3 - PubMed
  35. J Am Chem Soc. 2014 Oct 22;136(42):14714-7 - PubMed
  36. J Phys Chem B. 2011 Jun 23;115(24):7726-35 - PubMed
  37. Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3140-4 - PubMed
  38. Chem Rev. 2006 Mar;106(3):782-817 - PubMed
  39. Chem Rev. 2015 Dec 23;115(24):13165-307 - PubMed
  40. J Am Chem Soc. 2009 Feb 18;131(6):2408-15 - PubMed
  41. Nat Chem. 2011 Apr;3(4):317-22 - PubMed
  42. Science. 2008 Feb 1;319(5863):594-6 - PubMed
  43. Chem Commun (Camb). 2012 Feb 1;48(10):1577-9 - PubMed
  44. Chemistry. 2008;14(36):11328-42 - PubMed
  45. Chem Soc Rev. 2006 Nov;35(11):1122-34 - PubMed
  46. Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3328-33 - PubMed
  47. Nanoscale. 2015 May 7;7(17):7674-81 - PubMed
  48. J Am Chem Soc. 2010 Jul 28;132(29):10107-17 - PubMed

Publication Types