Display options
Share it on

Nat Nanotechnol. 2017 Sep;12(9):856-860. doi: 10.1038/nnano.2017.106. Epub 2017 Jun 26.

Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.

Nature nanotechnology

You Zhou, Giovanni Scuri, Dominik S Wild, Alexander A High, Alan Dibos, Luis A Jauregui, Chi Shu, Kristiaan De Greve, Kateryna Pistunova, Andrew Y Joe, Takashi Taniguchi, Kenji Watanabe, Philip Kim, Mikhail D Lukin, Hongkun Park

Affiliations

  1. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
  2. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  3. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

PMID: 28650440 DOI: 10.1038/nnano.2017.106

Abstract

Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe

References

  1. Nat Nanotechnol. 2017 Sep;12 (9):883-888 - PubMed
  2. Nature. 2015 Jun 11;522(7555):192-6 - PubMed
  3. Nat Commun. 2015 Dec 14;6:10110 - PubMed
  4. Phys Rev Lett. 2014 Aug 15;113(7):076802 - PubMed
  5. Nat Commun. 2014 May 12;5:3876 - PubMed
  6. Nat Commun. 2015 Feb 24;6:6242 - PubMed
  7. Nat Commun. 2013;4:1474 - PubMed
  8. Nat Nanotechnol. 2017 Feb;12 (2):144-149 - PubMed
  9. Nat Commun. 2014 Jul 28;5:4555 - PubMed
  10. Phys Rev Lett. 2015 Mar 13;114(10):107401 - PubMed
  11. Nano Lett. 2010 Apr 14;10(4):1271-5 - PubMed
  12. Nat Mater. 2013 Mar;12(3):207-11 - PubMed
  13. Nature. 2012 Aug 23;488(7412):481-4 - PubMed
  14. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  15. Nat Nanotechnol. 2014 Feb;9(2):111-5 - PubMed
  16. Nat Nanotechnol. 2013 Apr;8(4):271-6 - PubMed
  17. Phys Rev Lett. 2015 Dec 18;115(25):257403 - PubMed

Publication Types