Display options
Share it on

Nat Neurosci. 2017 Oct;20(10):1342-1349. doi: 10.1038/nn.4618. Epub 2017 Aug 14.

Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry.

Nature neuroscience

Hon-Cheong So, Carlos Kwan-Long Chau, Wan-To Chiu, Kin-Sang Ho, Cho-Pong Lo, Stephanie Ho-Yue Yim, Pak-Chung Sham

Affiliations

  1. School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  2. KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology and The Chinese University of Hong Kong, China.
  3. Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  4. Univeristy of Exeter Medical School, Exeter, UK.
  5. Department of Psychiatry, University of Hong Kong, Pokfulam, Hong Kong, China.
  6. Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong, China.
  7. State Key Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Pokfulam, Hong Kong, China.
  8. Centre for Reproduction, Development and Growth, University of Hong Kong, Pokfulam, Hong Kong, China.

PMID: 28805813 DOI: 10.1038/nn.4618

Abstract

Knowledge of psychiatric disease genetics has advanced rapidly during the past decade with the advent of genome-wide association studies (GWAS). However, less progress has been made in harnessing these data to reveal new therapies. Here we propose a framework for drug repositioning by comparing transcriptomes imputed from GWAS data with drug-induced gene expression profiles from the Connectivity Map database and apply this approach to seven psychiatric disorders. We found a number of repositioning candidates, many supported by preclinical or clinical evidence. Repositioning candidates for a number of disorders were also significantly enriched for known psychiatric medications or therapies considered in clinical trials. For example, candidates for schizophrenia were enriched for antipsychotics, while those for bipolar disorder were enriched for both antipsychotics and antidepressants. These findings provide support for the usefulness of GWAS data in guiding drug discovery.

References

  1. Nat Genet. 2016 Mar;48(3):245-52 - PubMed
  2. Nat Rev Genet. 2016 Apr 12;17 (6):353-64 - PubMed
  3. Am J Psychiatry. 2013 Nov;170(11):1249-62 - PubMed
  4. Front Aging Neurosci. 2010 May 21;2:null - PubMed
  5. Genome Res. 2014 Jan;24(1):14-24 - PubMed
  6. Lancet Psychiatry. 2016 Apr;3(4):350-7 - PubMed
  7. Front Pharmacol. 2015 Sep 22;6:205 - PubMed
  8. Nat Genet. 2011 Sep 18;43(10):977-83 - PubMed
  9. Int Clin Psychopharmacol. 2005 Jan;20(1):27-31 - PubMed
  10. BMC Genomics. 2014;15 Suppl 4:S5 - PubMed
  11. Nature. 2014 Jul 24;511(7510):421-7 - PubMed
  12. J Psychiatry Neurosci. 2004 Nov;29(6):485 - PubMed
  13. Arch Gen Psychiatry. 1985 Oct;42(10):962-6 - PubMed
  14. Cochrane Database Syst Rev. 2003;(1):CD003119 - PubMed
  15. Vet Res Commun. 2002 Jun;26(4):309-21 - PubMed
  16. PLoS Comput Biol. 2015 Apr 17;11(4):e1004219 - PubMed
  17. Nature. 2015 Jul 30;523(7562):588-91 - PubMed
  18. Psychiatry Investig. 2016 Jan;13(1):18-33 - PubMed
  19. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18105-10 - PubMed
  20. J Clin Epidemiol. 2014 Aug;67(8):850-7 - PubMed
  21. J Psychopharmacol. 2016 Aug;30(8):826-30 - PubMed
  22. Mol Psychiatry. 2016 Oct;21(10):1485 - PubMed
  23. Bipolar Disord. 2001 Feb;3(1):23-9 - PubMed
  24. Prog Neuropsychopharmacol Biol Psychiatry. 2010 Feb 1;34(1):32-6 - PubMed
  25. J Clin Psychopharmacol. 2000 Feb;20(1):84-9 - PubMed
  26. PLoS One. 2012;7(4):e35417 - PubMed
  27. Cochrane Database Syst Rev. 2011 Dec 07;(12):CD002955 - PubMed
  28. PLoS Med. 2013;10(3):e1001403 - PubMed
  29. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  30. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Oct 1;46:29-35 - PubMed
  31. Nat Biotechnol. 2012 Apr 10;30(4):317-20 - PubMed
  32. Nature. 2013 Jan 17;493(7432):371-7 - PubMed
  33. Int J Neuropsychopharmacol. 2013 Apr;16(3):501-6 - PubMed
  34. Nat Genet. 2013 Jun;45(6):580-5 - PubMed
  35. J Am Acad Child Adolesc Psychiatry. 1996 Mar;35(3):352-8 - PubMed
  36. Mol Psychiatry. 2013 Apr;18(4):497-511 - PubMed
  37. Cerebrum. 2013 Apr 02;2013:5 - PubMed
  38. BJPsych Open. 2015 Nov 17;1(2):e5-e7 - PubMed
  39. Nat Genet. 2013 Dec;45(12):1452-8 - PubMed
  40. Schizophr Res. 2017 Jun;184:145-146 - PubMed
  41. Genome Med. 2014 Dec 02;6(12):540 - PubMed
  42. BMC Genomics. 2016 Oct 19;17 (1):811 - PubMed
  43. J Affect Disord. 2014 May;160:62-7 - PubMed
  44. Br J Psychiatry. 2010 Sep;197(3):174-9 - PubMed
  45. J Am Acad Child Adolesc Psychiatry. 2010 Sep;49(9):884-97 - PubMed
  46. Lancet Psychiatry. 2015 May;2(5):452-464 - PubMed
  47. Nat Neurosci. 2016 Oct 26;19(11):1392-1396 - PubMed
  48. Science. 2006 Sep 29;313(5795):1929-35 - PubMed
  49. Clin Neuropharmacol. 2013 Nov-Dec;36(6):179-84 - PubMed
  50. Am J Psychiatry. 2011 Oct;168(10):1012-4 - PubMed
  51. Nat Genet. 2015 Sep;47(9):1091-8 - PubMed
  52. Acta Psychiatr Belg. 1983 Sep-Oct;83(5):517-24 - PubMed
  53. Am J Psychiatry. 1997 Apr;154(4):579-80 - PubMed
  54. Sci Transl Med. 2011 Aug 17;3(96):96ra77 - PubMed
  55. Sci Transl Med. 2011 Aug 17;3(96):96ra76 - PubMed
  56. Nat Rev Genet. 2014 May;15(5):335-46 - PubMed
  57. J Am Med Inform Assoc. 2013 Sep-Oct;20(5):954-61 - PubMed
  58. Nat Genet. 2015 Aug;47(8):856-60 - PubMed
  59. BMC Psychiatry. 2014 Dec 04;14:348 - PubMed
  60. J Atten Disord. 2013 Aug 21;:null - PubMed
  61. Brief Bioinform. 2011 Jul;12(4):303-11 - PubMed
  62. Br J Psychiatry. 1996 May;168(5):571-9 - PubMed
  63. Ther Adv Psychopharmacol. 2012 Aug;2(4):139-49 - PubMed
  64. Mol Psychiatry. 2015 Jul;20(7):820-6 - PubMed
  65. Arch Gen Psychiatry. 2006 Oct;63(10):1121-9 - PubMed

MeSH terms

Publication Types