Display options
Share it on

J Extracell Vesicles. 2017 Jun 19;6(1):1333883. doi: 10.1080/20013078.2017.1333883. eCollection 2017.

High throughput nanoparticle tracking analysis for monitoring outer membrane vesicle production.

Journal of extracellular vesicles

Matthias J H Gerritzen, Dirk E Martens, René H Wijffels, Michiel Stork

Affiliations

  1. Process Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.
  2. Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.
  3. Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.

PMID: 28717425 PMCID: PMC5505008 DOI: 10.1080/20013078.2017.1333883

Abstract

Outer membrane vesicles (OMVs) are spherical membrane nanoparticles released by Gram-negative bacteria. OMVs can be quantified in complex matrices by nanoparticle tracking analysis (NTA). NTA can be performed in static mode or with continuous sample flow that results in analysis of more particles in a smaller time-frame. Flow measurements must be performed manually despite the availability of a sample changer on the NanoSight system. Here we present a method for automated measurements in flow mode. OMV quantification in flow mode results in lower variance in particle quantification (coefficient of variation (CV) of 6%, CV static measurements of 14%). Sizing of OMVs was expected to be less favorable in flow mode due to the increased movement of the particles. However, we observed a CV of 3% in flow mode and a CV of 8% in static measurements. Flow rates of up to 5 µL/min displayed correct size and particle measurements, however, particle concentration was slightly lower than in static measurements. The automated method was used to assess OMV release of batch cultures of

Keywords: NanoSight system; Nanoparticle tracking analysis; Neisseria meningitidis; autosampler; outer membrane vesicles; sample changer; syringe pump; vaccine production

References

  1. Nat Rev Microbiol. 2015 Oct;13(10):605-19 - PubMed
  2. J Extracell Vesicles. 2014 Nov 24;3:25361 - PubMed
  3. PLoS One. 2013 May 31;8(5):e65157 - PubMed
  4. Appl Environ Microbiol. 2014 Sep;80(18):5854-65 - PubMed
  5. Mol Microbiol. 2009 Jun;72(6):1395-407 - PubMed
  6. Biol Chem. 2015 Feb;396(2):95-109 - PubMed
  7. Nature. 2005 Sep 15;437(7057):422-5 - PubMed
  8. Nanomedicine. 2011 Dec;7(6):780-8 - PubMed
  9. Appl Environ Microbiol. 2015 Jul;81(13):4423-31 - PubMed
  10. J Bacteriol. 2006 Aug;188(15):5385-92 - PubMed
  11. Biotechnol J. 2015 Sep;10 (11):1689-706 - PubMed
  12. Mol Microbiol. 2007 Jan;63(2):545-58 - PubMed
  13. J Thromb Haemost. 2014 Jul;12(7):1182-92 - PubMed
  14. Annu Rev Microbiol. 2010;64:163-84 - PubMed
  15. PLoS One. 2013;8(1):e54314 - PubMed
  16. J Control Release. 2015 Feb 28;200:87-96 - PubMed
  17. J Extracell Vesicles. 2013 Feb 15;2:null - PubMed
  18. Vaccine. 2016 Feb 17;34(8):1025-33 - PubMed
  19. J Chromatogr A. 2017 Mar 3;1487:89-99 - PubMed
  20. Placenta. 2016 Feb;38:29-32 - PubMed
  21. Pharm Res. 2010 May;27(5):796-810 - PubMed
  22. Nat Protoc. 2012 Jun 14;7(7):1311-26 - PubMed
  23. J Extracell Vesicles. 2014 Aug 11;3:null - PubMed
  24. Vaccine. 2012 May 30;30 Suppl 2:B87-97 - PubMed
  25. J Extracell Vesicles. 2014 Dec 10;3:25922 - PubMed
  26. J Pharm Sci. 2016 Apr;105(4):1434-43 - PubMed
  27. Anal Chem. 2011 May 1;83(9):3499-506 - PubMed
  28. Front Immunol. 2014 Mar 24;5:121 - PubMed

Publication Types