Display options
Share it on

Ecol Evol. 2017 May 19;7(13):4607-4619. doi: 10.1002/ece3.2995. eCollection 2017 Jul.

Bioclimatic transect networks: Powerful observatories of ecological change.

Ecology and evolution

Stefan Caddy-Retalic, Alan N Andersen, Michael J Aspinwall, Martin F Breed, Margaret Byrne, Matthew J Christmas, Ning Dong, Bradley J Evans, Damien A Fordham, Greg R Guerin, Ary A Hoffmann, Alice C Hughes, Stephen J van Leeuwen, Francesca A McInerney, Suzanne M Prober, Maurizio Rossetto, Paul D Rymer, Dorothy A Steane, Glenda M Wardle, Andrew J Lowe

Affiliations

  1. Australian Transect Network Terrestrial Ecosystem Research Network (TERN) Adelaide SA Australia.
  2. School of Biological Sciences and Environment InstituteUniversity of Adelaide Adelaide SA Australia.
  3. Charles Darwin University Darwin NT Australia.
  4. Hawkesbury Institute for the Environment Western Sydney University Parramatta NSW Australia.
  5. Science and Conservation Division Western Australian Department of Parks and Wildlife Kensington WA Australia.
  6. Department of Biological Sciences Macquarie University North Ryde NSW Australia.
  7. Ecosystem Modelling and Scaling Infrastructure Terrestrial Ecosystem Research Network (TERN) Adelaide SA Australia.
  8. School Life and Environmental Sciences University of Sydney Sydney NSW Australia.
  9. School of BioSciences, Bio 21 InstituteThe University of Melbourne Parkville VIC Australia.
  10. Centre for Integrative Conservation Xishuangbanna Tropical Botanic Garden Chinese Academy of Sciences Menglun, Mengla County Yunnan China.
  11. Sprigg Geobiology Centre and School of Physical Sciences University of Adelaide Adelaide SA Australia.
  12. CSIRO Land and Water Wembley WA Australia.
  13. National Herbarium of NSW Royal Botanic Gardens and Domain Trust Sydney NSW Australia.
  14. School of Biological Sciences University of Tasmania Private Bag 55 Hobart Tasmania 7001 Australia.
  15. Faculty of Science, Health, Education and Engineering University of the Sunshine Coast Maroochydore QLD Australia.
  16. Long Term Ecological Research Network Terrestrial Ecosystem Research Network (TERN) Adelaide SA Australia.

PMID: 28690791 PMCID: PMC5496522 DOI: 10.1002/ece3.2995

Abstract

Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.

Keywords: change detection; community turnover; ecological forecasting; environmental gradients; spatial analogues; transect replication

References

  1. Nature. 2012 Oct 18;490(7420):337-8 - PubMed
  2. BMC Evol Biol. 2011 May 18;11:126 - PubMed
  3. Mol Ecol. 2015 May;24(10):2423-32 - PubMed
  4. Mol Ecol. 2016 Sep;25(17):4216-33 - PubMed
  5. Mol Ecol. 2014 May;23(10):2500-13 - PubMed
  6. Science. 2005 Apr 29;308(5722):691-3 - PubMed
  7. Ecol Evol. 2017 May 19;7(13):4607-4619 - PubMed
  8. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9374-9 - PubMed
  9. Annu Rev Genet. 2012;46:185-208 - PubMed
  10. Ecol Lett. 2013 May;16 Suppl 1:94-105 - PubMed
  11. Biol Lett. 2013 Feb 23;9(1):20120860 - PubMed
  12. Trends Ecol Evol. 2014 Oct;29(10):572-80 - PubMed
  13. Biol Lett. 2012 Oct 23;8(5):882-6 - PubMed
  14. Plant Biol (Stuttg). 2014 Mar;16(2):419-27 - PubMed
  15. Mol Ecol. 2015 Jul;24(13):3223-31 - PubMed
  16. PLoS One. 2012;7(4):e34620 - PubMed
  17. Sci Rep. 2017 Feb 01;7:41367 - PubMed
  18. Evolution. 2012 Jan;66(1):1-17 - PubMed
  19. Trends Ecol Evol. 2014 Aug;29(8):436-43 - PubMed
  20. Genome Biol Evol. 2017 Feb 1;9(2):253-265 - PubMed
  21. Evolution. 2014 Jan;68(1):1-15 - PubMed
  22. Nat Rev Genet. 2013 Nov;14(11):807-20 - PubMed
  23. J Theor Biol. 2006 Aug 21;241(4):896-902 - PubMed
  24. Sci Total Environ. 2015 Nov 15;534:4-13 - PubMed
  25. Cell. 2014 Mar 27;157(1):95-109 - PubMed
  26. Science. 2016 Sep 23;353(6306):1431-1433 - PubMed
  27. Ecol Lett. 2014 Jan;17(1):125-e1 - PubMed
  28. Proc Biol Sci. 2008 Mar 22;275(1635):649-59 - PubMed
  29. Science. 2014 May 23;344(6186):895-8 - PubMed
  30. Mol Biol Evol. 2011 Jan;28(1):249-56 - PubMed
  31. Mol Ecol. 2013 Feb;22(4):925-46 - PubMed
  32. Biol Rev Camb Philos Soc. 2013 Feb;88(1):15-30 - PubMed
  33. Glob Chang Biol. 2015 Apr;21(4):1689-703 - PubMed
  34. Plant Cell Environ. 2014 Jun;37(6):1440-51 - PubMed
  35. Genetica. 2007 Feb;129(2):133-47 - PubMed
  36. Evolution. 2014 May;68(5):1385-98 - PubMed
  37. PLoS One. 2017 Feb 28;12(2):e0172977 - PubMed

Publication Types