Display options
Share it on

Sci Rep. 2017 Aug 15;7(1):8258. doi: 10.1038/s41598-017-08645-z.

Dynamics of nano-confined water in Portland cement - comparison with synthetic C-S-H gel and other silicate materials.

Scientific reports

Guido Goracci, Manuel Monasterio, Helen Jansson, Silvina Cerveny

Affiliations

  1. Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018, San Sebastián, Spain.
  2. Shenzhen Advanced Civil Engineering Technology, Association Research Center Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
  3. State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
  4. Department of Civil and Environmental Engineering, Chalmers University of Technology, Göteborg, Sweden.
  5. Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018, San Sebastián, Spain. [email protected].
  6. Donostia International Physics Center, DIPC, 20018, San Sebastián, Spain. [email protected].

PMID: 28811588 PMCID: PMC5557859 DOI: 10.1038/s41598-017-08645-z

Abstract

The dynamics of water confined in cement materials is still a matter of debate in spite of the fact that water has a major influence on properties such as durability and performance. In this study, we have investigated the dynamics of water confined in Portland cement (OPC) at different curing ages (3 weeks and 4 years after preparation) and at three water-to-cement ratios (w/c, 0.3, 0.4 and 0.5). Using broadband dielectric spectroscopy, we distinguish four different dynamics due to water molecules confined in the pores of different sizes of cements. Here we show how water dynamics is modified by the evolution in the microstructure (maturity) and the w/c ratio. The fastest dynamics (processes 1 and 2, representing very local water dynamics) are independent of water content and the degree of maturity whereas the slowest dynamics (processes 3 and 4) are dependent on the microstructure developed during curing. Additionally, we analyze the differences regarding the water dynamics when confined in synthetic C-S-H gel and in the C-S-H of Portland cement.

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):031803 - PubMed
  2. J Am Chem Soc. 2012 Feb 1;134(4):2208-15 - PubMed
  3. ACS Appl Mater Interfaces. 2016 Dec 28;8(51):35621-35627 - PubMed
  4. J Colloid Interface Sci. 2015 Aug 15;452:2-7 - PubMed
  5. Phys Chem Chem Phys. 2011 Oct 21;13(39):17658-66 - PubMed
  6. J Chem Phys. 2014 Feb 7;140(5):054515 - PubMed
  7. Eur Phys J E Soft Matter. 2003 Nov;12 Suppl 1:S51-4 - PubMed
  8. J Phys Condens Matter. 2015 Jan 28;27(3):033102 - PubMed
  9. Chem Rev. 2016 Jul 13;116(13):7608-25 - PubMed
  10. J Colloid Interface Sci. 2015 Jul 15;450:109-18 - PubMed
  11. J Chem Phys. 2013 Oct 28;139(16):164714 - PubMed
  12. J Chem Phys. 2008 Apr 21;128(15):154503 - PubMed
  13. Chem Soc Rev. 2013 May 7;42(9):4141-71 - PubMed
  14. J Phys Chem B. 2005 Aug 18;109(32):15548-57 - PubMed
  15. Nano Lett. 2015 Mar 11;15(3):1987-92 - PubMed
  16. J Chem Phys. 2005 Feb 22;122(8):84505 - PubMed
  17. J Chem Phys. 2011 Jan 21;134(3):034509 - PubMed
  18. Sci Rep. 2013;3:2667 - PubMed
  19. Phys Chem Chem Phys. 2015 Jan 14;17(2):1411-23 - PubMed
  20. J Chem Phys. 2012 Aug 14;137(6):064706 - PubMed
  21. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10552-7 - PubMed
  22. Microscopy (Oxf). 2013 Feb;62(1):109-46 - PubMed
  23. J Phys Chem B. 2007 Oct 25;111(42):12219-27 - PubMed
  24. Nature. 2000 Jan 20;403(6767):283-6 - PubMed

Publication Types