Display options
Share it on

Nat Ecol Evol. 2017 Apr 03;1(5):119. doi: 10.1038/s41559-017-0119.

Young inversion with multiple linked QTLs under selection in a hybrid zone.

Nature ecology & evolution

Cheng-Ruei Lee, Baosheng Wang, Julius P Mojica, Terezie Mandáková, Kasavajhala V S K Prasad, Jose Luis Goicoechea, Nadeesha Perera, Uffe Hellsten, Hope N Hundley, Jenifer Johnson, Jane Grimwood, Kerrie Barry, Stephen Fairclough, Jerry W Jenkins, Yeisoo Yu, Dave Kudrna, Jianwei Zhang, Jayson Talag, Wolfgang Golser, Kathryn Ghattas, M Eric Schranz, Rod Wing, Martin A Lysak, Jeremy Schmutz, Daniel S Rokhsar, Thomas Mitchell-Olds

Affiliations

  1. Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA.
  2. Institute of Ecology and Evolutionary Biology and Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan ROC.
  3. Department of Plant Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
  4. Plant Cytogenomics Group, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic.
  5. Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
  6. Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.
  7. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.
  8. HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA.
  9. Phyzen Genomics Institute, Phyzen Inc., Seoul 151-836, South Korea.
  10. Biosystematics Group, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.

PMID: 28812690 PMCID: PMC5607633 DOI: 10.1038/s41559-017-0119

Abstract

Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.

References

  1. Genetics. 1989 Nov;123(3):585-95 - PubMed
  2. BMC Bioinformatics. 2014 Nov 25;15:356 - PubMed
  3. RNA. 2016 Jun;22(6):839-51 - PubMed
  4. Genetics. 1993 Mar;133(3):693-709 - PubMed
  5. Mol Ecol. 2011 Nov;20(22):4631-42 - PubMed
  6. PLoS Genet. 2006 Dec;2(12):e190 - PubMed
  7. Evolution. 2015 May;69(5):1178-90 - PubMed
  8. Mol Ecol. 2011 Dec;20(24):5123-40 - PubMed
  9. Science. 2012 Aug 31;337(6098):1081-4 - PubMed
  10. Nucleic Acids Res. 2016 Jan 4;44(D1):D1167-71 - PubMed
  11. Genome Res. 2011 Apr;21(4):618-25 - PubMed
  12. PLoS Genet. 2012;8(12):e1003056 - PubMed
  13. Bioinformatics. 2007 May 15;23(10):1289-91 - PubMed
  14. Genome Res. 2008 May;18(5):821-9 - PubMed
  15. Mol Biol Evol. 2016 Jul;33(7):1679-96 - PubMed
  16. Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):430-8 - PubMed
  17. Nucleic Acids Res. 2009 Apr;37(5):e36 - PubMed
  18. Genetics. 2006 May;173(1):419-34 - PubMed
  19. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  20. Science. 2007 Jul 20;317(5836):338-42 - PubMed
  21. Mol Ecol. 2011 Dec;20(23):4843-57 - PubMed
  22. Nucleic Acids Res. 2011 May;39(10):e68 - PubMed
  23. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  24. Genomics. 2012 Jan;99(1):25-35 - PubMed
  25. Plant Cell. 2008 Oct;20(10):2559-70 - PubMed
  26. Plant J. 2015 Jun;82(5):785-93 - PubMed
  27. Evolution. 2014 Jan;68(1):16-31 - PubMed
  28. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 - PubMed
  29. Bioinformatics. 2011 Aug 1;27(15):2156-8 - PubMed
  30. Genetics. 2012 Apr;190(4):1153-5 - PubMed
  31. Genetics. 2005 Oct;171(2):783-90 - PubMed
  32. Genetics. 2013 Jun;194(2):459-71 - PubMed
  33. Genetics. 2000 Jul;155(3):1405-13 - PubMed
  34. Bioinformatics. 2014 May 1;30(9):1312-3 - PubMed
  35. Bioinformatics. 2014 May 15;30(10):1486-7 - PubMed
  36. Mol Ecol. 2013 Feb;22(3):699-708 - PubMed
  37. Nat Genet. 2011 May;43(5):491-8 - PubMed
  38. Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12084-8 - PubMed
  39. BMC Genomics. 2012 Feb 01;13:53 - PubMed
  40. PLoS Genet. 2008 Oct;4(10):e1000212 - PubMed
  41. Genetics. 2006 Mar;172(3):1655-63 - PubMed
  42. PLoS One. 2012;7(8):e43888 - PubMed
  43. Proc Biol Sci. 2012 Sep 22;279(1743):3843-52 - PubMed
  44. Heredity (Edinb). 2015 May;114(5):515-24 - PubMed
  45. Genome Biol. 2004;5(2):R12 - PubMed
  46. PLoS Biol. 2010 Sep 28;8(9):null - PubMed
  47. Fly (Austin). 2012 Apr-Jun;6(2):80-92 - PubMed
  48. Nat Genet. 2013 Jul;45(7):831-5 - PubMed
  49. Mol Ecol. 2013 Apr;22(8):2204-17 - PubMed
  50. Science. 2010 Jan 1;327(5961):92-4 - PubMed
  51. Am J Hum Genet. 2007 Sep;81(3):559-75 - PubMed
  52. Plant Physiol. 2007 May;144(1):286-98 - PubMed
  53. Mol Biol Evol. 2016 Feb;33(2):394-412 - PubMed
  54. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  55. Nat Genet. 2013 Aug;45(8):884-890 - PubMed
  56. Evolution. 2011 Mar;65(3):771-87 - PubMed
  57. PLoS Biol. 2010 Sep 28;8(9):null - PubMed
  58. Evolution. 1984 Nov;38(6):1358-1370 - PubMed
  59. Trends Ecol Evol. 2001 Jul 1;16(7):351-358 - PubMed
  60. Evolution. 2003 Mar;57(3):447-59 - PubMed
  61. PLoS One. 2011;6(8):e23501 - PubMed
  62. Genome Res. 2000 Nov;10(11):1772-87 - PubMed
  63. Plant Cell Environ. 2014 Nov;37(11):2459-69 - PubMed

Publication Types

Grant support