Display options
Share it on

JCI Insight. 2017 Aug 17;2(16). doi: 10.1172/jci.insight.86715. eCollection 2017 Aug 17.

Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction.

JCI insight

Marmar Vaseghi, Siamak Salavatian, Pradeep S Rajendran, Daigo Yagishita, William R Woodward, David Hamon, Kentaro Yamakawa, Tadanobu Irie, Beth A Habecker, Kalyanam Shivkumar

Affiliations

  1. Cardiac Arrhythmia Center.
  2. Neurocardiology Research Center of Excellence, and.
  3. Molecular Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, California, USA.
  4. Department of Physiology & Pharmacology and.
  5. Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA.

PMID: 28814663 PMCID: PMC5621871 DOI: 10.1172/jci.insight.86715

Abstract

Myocardial infarction causes sympathetic activation and parasympathetic dysfunction, which increase risk of sudden death due to ventricular arrhythmias. Mechanisms underlying parasympathetic dysfunction are unclear. The aim of this study was to delineate consequences of myocardial infarction on parasympathetic myocardial neurotransmitter levels and the function of parasympathetic cardiac ganglia neurons, and to assess electrophysiological effects of vagal nerve stimulation on ventricular arrhythmias in a chronic porcine infarct model. While norepinephrine levels decreased, cardiac acetylcholine levels remained preserved in border zones and viable myocardium of infarcted hearts. In vivo neuronal recordings demonstrated abnormalities in firing frequency of parasympathetic neurons of infarcted animals. Neurons that were activated by parasympathetic stimulation had low basal firing frequency, while neurons that were suppressed by left vagal nerve stimulation had abnormally high basal activity. Myocardial infarction increased sympathetic inputs to parasympathetic convergent neurons. However, the underlying parasympathetic cardiac neuronal network remained intact. Augmenting parasympathetic drive with vagal nerve stimulation reduced ventricular arrhythmia inducibility by decreasing ventricular excitability and heterogeneity of repolarization of infarct border zones, an area with known proarrhythmic potential. Preserved acetylcholine levels and intact parasympathetic neuronal pathways can explain the electrical stabilization of infarct border zones with vagal nerve stimulation, providing insight into its antiarrhythmic benefit.

Keywords: Cardiology

References

  1. Am Heart J. 1977 Jan;93(1):60-5 - PubMed
  2. Circ Res. 1987 Sep;61(3):429-35 - PubMed
  3. J Am Coll Cardiol. 1987 Jan;9(1):147-53 - PubMed
  4. Heart Rhythm. 2016 Oct;13(10):1957-63 - PubMed
  5. Am J Cardiol. 1987 Feb 1;59(4):256-62 - PubMed
  6. Am J Physiol Heart Circ Physiol. 2013 Oct 1;305(7):H1031-40 - PubMed
  7. Am J Physiol. 1993 Oct;265(4 Pt 2):R914-22 - PubMed
  8. Am J Cardiol. 1982 Jan;49(1):166-85 - PubMed
  9. Circulation. 2004 Sep 14;110(11):1343-50 - PubMed
  10. Lancet. 2010 Jan 2;375(9708):31-40 - PubMed
  11. Circulation. 2000 Mar 21;101(11):1288-96 - PubMed
  12. Circulation. 1975 Oct;52(4):578-85 - PubMed
  13. Circulation. 1973 Feb;47(2):291-8 - PubMed
  14. J Am Coll Cardiol. 1996 Dec;28(7):1753-8 - PubMed
  15. Circulation. 2000 Apr 25;101(16):1960-9 - PubMed
  16. Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1579-90 - PubMed
  17. Neuroscience. 1978;3(2):207-18 - PubMed
  18. J Physiol. 2013 Sep 15;591(18):4515-33 - PubMed
  19. Circulation. 1974 May;49(5):943-7 - PubMed
  20. Circulation. 1983 Jun;67(6):1356-67 - PubMed
  21. Comp Med. 2015 Feb;65(1):54-61 - PubMed
  22. Circulation. 1977 Sep;56(3):385-91 - PubMed
  23. Am J Physiol Heart Circ Physiol. 2015 Nov 15;309(10 ):H1740-52 - PubMed
  24. Nat Commun. 2015 Feb 02;6:6235 - PubMed
  25. Heart Rhythm. 2006 Jan;3(1):108-13 - PubMed
  26. Auton Neurosci. 2008 Jun;140(1-2):40-8 - PubMed
  27. Circ Arrhythm Electrophysiol. 2015 Feb;8(1):174-85 - PubMed
  28. Heart Rhythm. 2006 Jan;3(1):1-10 - PubMed
  29. Circulation. 1990 Jan;81(1):281-8 - PubMed
  30. Heart Rhythm. 2011 Jul;8(7):1060-7 - PubMed
  31. Neurosci Lett. 2012 Oct 31;529(1):55-9 - PubMed
  32. Am J Physiol Heart Circ Physiol. 2012 May 1;302(9):H1838-46 - PubMed
  33. J Am Coll Cardiol. 1991 Sep;18(3):687-97 - PubMed
  34. Prog Cardiovasc Dis. 2008 May-Jun;50(6):404-19 - PubMed
  35. Circ Res. 2012 Jul 20;111(3):301-11 - PubMed
  36. J Physiol. 2016 Jan 15;594(2):321-41 - PubMed
  37. J Clin Invest. 2010 Feb;120(2):408-21 - PubMed
  38. Circulation. 2005 Jul 12;112(2):164-70 - PubMed
  39. Circulation. 1985 Dec;72(6):1372-9 - PubMed
  40. Circulation. 1983 Apr;67(4):787-96 - PubMed
  41. HeartRhythm Case Rep. 2016 Jan 1;2(1):47-51 - PubMed
  42. Circ Res. 2015 May 8;116(10):1691-9 - PubMed
  43. Circ Res. 1994 Oct;75(4):722-32 - PubMed
  44. Lancet. 1998 Feb 14;351(9101):478-84 - PubMed
  45. Circulation. 1991 Mar;83(3):945-52 - PubMed
  46. J Am Coll Cardiol. 1997 Oct;30(4):1015-23 - PubMed
  47. Exp Physiol. 2008 Feb;93(2):165-76 - PubMed
  48. Heart Rhythm. 2010 Dec;7(12):1817-24 - PubMed
  49. Science. 1994 Jan 14;263(5144):232-4 - PubMed
  50. Circulation. 1993 Sep;88(3):915-26 - PubMed
  51. Circulation. 2003 Jul 1;107(25):3236-42 - PubMed
  52. Jpn Circ J. 2001 Aug;65(8):702-6 - PubMed
  53. Circ Res. 1976 Aug;39(2):168-77 - PubMed
  54. J Am Coll Cardiol. 2010 May 25;55(21):2355-65 - PubMed
  55. Curr Cardiol Rep. 2012 Oct;14 (5):577-83 - PubMed
  56. Am J Physiol Heart Circ Physiol. 2014 Sep 1;307(5):H722-31 - PubMed
  57. Circ Res. 2000 Mar 3;86(4):396-407 - PubMed
  58. IEEE Trans Biomed Eng. 2010 Mar;57(3):754-60 - PubMed
  59. Circ Arrhythm Electrophysiol. 2011 Apr;4(2):185-94 - PubMed

Publication Types

Grant support