Display options
Share it on

Front Physiol. 2017 Jul 04;8:464. doi: 10.3389/fphys.2017.00464. eCollection 2017.

Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume.

Frontiers in physiology

Prescilla Perrichon, Martin Grosell, Warren W Burggren

Affiliations

  1. Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North TexasDenton, TX, United States.
  2. Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of MiamiMiami, FL, United States.

PMID: 28725199 PMCID: PMC5495860 DOI: 10.3389/fphys.2017.00464

Abstract

Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the "standard" prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30-50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function-especially if stroke volume is the focus of the study-should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output.

Keywords: cardiac output; heart shape modeling; larval fish; mahi-mahi; red drum; stroke volume; ventricular volume

References

  1. Am J Physiol Regul Integr Comp Physiol. 2000 Nov;279(5):R1634-40 - PubMed
  2. Echocardiography. 1999 May;16(4):321-329 - PubMed
  3. J Exp Biol. 2003 Apr;206(Pt 8):1299-307 - PubMed
  4. Comp Biochem Physiol A Mol Integr Physiol. 2003 May;135(1):131-45 - PubMed
  5. Cardiovasc Ultrasound. 2003 Aug 25;1:11 - PubMed
  6. Toxicol Appl Pharmacol. 2004 Apr 15;196(2):191-205 - PubMed
  7. Am J Physiol Regul Integr Comp Physiol. 2004 Dec;287(6):R1399-406 - PubMed
  8. J Exp Biol. 2005 Jun;208(Pt 11):2123-34 - PubMed
  9. Physiol Biochem Zool. 2006 Jan-Feb;79(1):194-201 - PubMed
  10. Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S225-30 - PubMed
  11. Trends Cardiovasc Med. 2008 May;18(4):150-5 - PubMed
  12. Environ Sci Technol. 2009 Jan 1;43(1):201-7 - PubMed
  13. Physiol Genomics. 2010 Sep;42A(1):8-23 - PubMed
  14. Anat Rec (Hoboken). 2011 Feb;294(2):236-42 - PubMed
  15. Cardiovasc Res. 2011 Jul 15;91(2):279-88 - PubMed
  16. Toxicol Appl Pharmacol. 2011 Dec 1;257(2):242-9 - PubMed
  17. Circ Res. 2012 Mar 16;110(6):870-4 - PubMed
  18. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  19. Circ Res. 1990 Jan;66(1):109-14 - PubMed
  20. Dev Dyn. 2012 Dec;241(12):1993-2004 - PubMed
  21. Environ Sci Technol. 2014 Jun 17;48(12):7053-61 - PubMed
  22. Environ Toxicol Chem. 2016 Oct;35(10):2613-2622 - PubMed
  23. Aquat Toxicol. 2016 Aug;177:515-25 - PubMed
  24. Sci Rep. 2016 Aug 10;6:31058 - PubMed
  25. Aquat Toxicol. 2016 Nov;180:274-281 - PubMed
  26. Sci Total Environ. 2017 Feb 1;579:797-804 - PubMed
  27. Biol Open. 2017 Jun 15;6(6):800-809 - PubMed
  28. Cardiovasc Eng Technol. 2013 Sep;4(3):234-245 - PubMed
  29. Dev Biol. 1974 Nov;41(1):14-21 - PubMed
  30. Am J Physiol. 1995 Nov;269(5 Pt 2):R1126-32 - PubMed
  31. J Exp Zool. 1996 Jun 1-15;275(2-3):144-61 - PubMed
  32. Braz J Med Biol Res. 1995 Nov-Dec;28(11-12):1291-305 - PubMed
  33. Am J Physiol. 1996 Oct;271(4 Pt 2):R912-7 - PubMed
  34. Physiol Zool. 1998 Mar-Apr;71(2):191-7 - PubMed

Publication Types