Display options
Share it on

Materials (Basel). 2014 Aug 25;7(9):6105-6119. doi: 10.3390/ma7096105.

Native Cellulose: Structure, Characterization and Thermal Properties.

Materials (Basel, Switzerland)

Matheus Poletto, Heitor L Ornaghi, Ademir J Zattera

Affiliations

  1. Laboratory of Polymers (LPOL), University of Caxias do Sul (UCS), Francisco GetĂșlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil. [email protected].
  2. Laboratory of Polymers (LPOL), University of Caxias do Sul (UCS), Francisco GetĂșlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil. [email protected].
  3. Laboratory of Polymers (LPOL), University of Caxias do Sul (UCS), Francisco GetĂșlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil. [email protected].

PMID: 28788179 PMCID: PMC5456159 DOI: 10.3390/ma7096105

Abstract

In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations.

Keywords: FTIR; XRD; cellulose; crystallinity; natural fibers; thermal stability

References

  1. Carbohydr Res. 2004 Feb 25;339(3):569-78 - PubMed
  2. Carbohydr Res. 2005 Feb 28;340(3):417-28 - PubMed
  3. Angew Chem Int Ed Engl. 2005 May 30;44(22):3358-93 - PubMed
  4. Carbohydr Res. 2005 Oct 31;340(15):2376-91 - PubMed
  5. Appl Spectrosc. 2007 Nov;61(11):1168-77 - PubMed
  6. Biotechnol Bioeng. 2011 Jul;108(7):1509-20 - PubMed
  7. Bioresour Technol. 2012 Apr;109:148-53 - PubMed
  8. Bioresour Technol. 2012 Dec;126:7-12 - PubMed
  9. Carbohydr Polym. 2013 May 15;94(2):904-17 - PubMed
  10. Materials (Basel). 2013 Dec 20;7(1):16-29 - PubMed

Publication Types