Display options
Share it on

Materials (Basel). 2014 Jan 16;7(1):441-456. doi: 10.3390/ma7010441.

On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials.

Materials (Basel, Switzerland)

Alex Elías-Zúñiga, Karen Baylón, Inés Ferrer, Lídia Serenó, Maria Luisa García-Romeu, Isabel Bagudanch, Jordi Grabalosa, Tania Pérez-Recio, Oscar Martínez-Romero, Wendy Ortega-Lara, Luis Ernesto Elizalde

Affiliations

  1. Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, E. Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico. [email protected].
  2. Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, E. Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico. [email protected].
  3. Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurelia Capmany 61, Girona 17071, Spain. [email protected].
  4. Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurelia Capmany 61, Girona 17071, Spain. [email protected].
  5. Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurelia Capmany 61, Girona 17071, Spain. [email protected].
  6. Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurelia Capmany 61, Girona 17071, Spain. [email protected].
  7. Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurelia Capmany 61, Girona 17071, Spain. [email protected].
  8. Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, E. Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico. [email protected].
  9. Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, E. Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico. [email protected].
  10. Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, E. Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico. [email protected].
  11. Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140 Saltillo, Coahuila CP25250, Mexico. [email protected].

PMID: 28788466 PMCID: PMC5453134 DOI: 10.3390/ma7010441

Abstract

In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

Keywords: biological tissues; biomaterial residual strains; pseudo-elasticity theory; rule of mixtures; stress-softening effects

References

  1. J Biomech. 2008;41(1):93-9 - PubMed
  2. Biophys J. 2010 May 19;98(9):1941-8 - PubMed
  3. J Mech Behav Biomed Mater. 2011 Apr;4(3):275-83 - PubMed
  4. J Biomech. 2012 Jun 1;45(9):1717-23 - PubMed
  5. Materials (Basel). 2013 Jul 16;6(7):2873-2891 - PubMed
  6. Pediatr Res. 1989 Feb;25(2):143-6 - PubMed

Publication Types