Display options
Share it on

Sci Rep. 2017 Jul 20;7(1):5976. doi: 10.1038/s41598-017-05156-9.

Metal Nanoclusters with Synergistically Engineered Optical and Buffering Activity of Intracellular Reactive Oxygen Species by Compositional and Supramolecular Design.

Scientific reports

B Santiago-Gonzalez, A Monguzzi, M Caputo, C Villa, M Prato, C Santambrogio, Y Torrente, F Meinardi, S Brovelli

Affiliations

  1. Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy. [email protected].
  2. Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy.
  3. Dipartimento di Patofisiologia e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Via Francesco Sforza 35, 20122, Milano, Italy.
  4. Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
  5. Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca Piazza della Scienza, 2 20126, Milano, Italy.
  6. Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy. [email protected].

PMID: 28729689 PMCID: PMC5519591 DOI: 10.1038/s41598-017-05156-9

Abstract

Metal nanoclusters featuring tunable luminescence and high biocompatibility are receiving attention as fluorescent markers for cellular imaging. The recently discovered ability of gold clusters to scavenge cytotoxic reactive oxygen species (ROS) from the intracellular environment extends their applicability to biomedical theranostics and provides a novel platform for realizing multifunctional luminescent probes with engineered anti-cytotoxic activity for applications in bio-diagnostics and conceivably cellular therapy. This goal could be achieved by using clusters of strongly reactive metals such as silver, provided that strategies are found to enhance their luminescence while simultaneously enabling direct interaction between the metal atoms and the chemical surroundings. In this work, we demonstrate a synergic approach for realizing multifunctional metal clusters combining enhanced luminescence with strong and lasting ROS scavenging activity, based on the fabrication and in situ protection of Ag nanoclusters with a supramolecular mantle of thiolated-Au atoms (Ag/Au-t). Confocal imaging and viability measurements highlight the biocompatibility of Ag/Au-t and their suitability as fluorescent bio-markers. ROS concentration tests reveal the remarkable scavenging activity of Ag-based clusters. Proliferation tests of cells in artificially stressed culture conditions point out their prolonged anti-cytotoxic effect with respect to gold systems, ensuring positive cell proliferation rates even for long incubation time.

References

  1. Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L556-64 - PubMed
  2. ACS Nano. 2016 Aug 23;10(8):7934-42 - PubMed
  3. Science. 2009 Aug 21;325(5943):973-6 - PubMed
  4. J Am Chem Soc. 2014 Jan 29;136(4):1246-9 - PubMed
  5. J Am Chem Soc. 2005 Apr 13;127(14):5261-70 - PubMed
  6. J Phys Chem Lett. 2016 Mar 17;7(6):962-75 - PubMed
  7. J Colloid Interface Sci. 2015 Oct 1;455:154-62 - PubMed
  8. Small. 2014 Sep 24;10(18):3632-6 - PubMed
  9. Chemosphere. 2016 Jun;153:322-31 - PubMed
  10. Chem Commun (Camb). 2010 May 21;46(19):3280-2 - PubMed
  11. Adv Mater. 2015 May 6;27(17):2753-61 - PubMed
  12. J Biol Chem. 2000 Dec 8;275(49):38891-9 - PubMed
  13. Adv Mater. 2014 Mar 5;26(9):1446-9 - PubMed
  14. Science. 2016 Aug 5;353(6299):571-5 - PubMed
  15. Biomaterials. 2014 Aug;35(25):6707-15 - PubMed
  16. J Am Chem Soc. 2014 Aug 6;136(31):11093-9 - PubMed
  17. ACS Nano. 2013 Mar 26;7(3):2509-21 - PubMed
  18. Nanoscale. 2015 Feb 7;7(5):1549-65 - PubMed
  19. J Am Chem Soc. 2008 Apr 16;130(15):5038-9 - PubMed
  20. Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53 - PubMed
  21. Chem Soc Rev. 2012 Mar 7;41(5):1867-91 - PubMed
  22. Phys Rev Lett. 2004 Aug 13;93(7):077402 - PubMed
  23. Nanoscale. 2013 Apr 7;5(7):2674-7 - PubMed
  24. Angew Chem Int Ed Engl. 2012 Feb 27;51(9):2155-9 - PubMed
  25. ACS Nano. 2016 Feb 23;10 (2):2591-9 - PubMed
  26. Nanoscale. 2014 May 21;6(10):5449-57 - PubMed
  27. Free Radic Biol Med. 2010 Dec 15;49(12 ):1925-36 - PubMed
  28. Nanoscale. 2014 Jan 7;6(1):157-61 - PubMed
  29. Cancer Res. 2002 Nov 1;62(21):6246-54 - PubMed
  30. Angew Chem Int Ed Engl. 2010 May 25;49(23):3925-9 - PubMed
  31. Angew Chem Int Ed Engl. 2009;48(2):318-20 - PubMed
  32. J Am Chem Soc. 2013 Jun 19;135(24):8822-5 - PubMed
  33. Dalton Trans. 2014 Aug 14;43(30):11557-65 - PubMed
  34. Arch Toxicol. 2008 May;82(5):273-99 - PubMed
  35. Chem Commun (Camb). 2014 May 25;50(40):5143-55 - PubMed
  36. Biosens Bioelectron. 2015 Mar 15;65:183-90 - PubMed
  37. Nat Chem. 2012 May 22;4(6):443-55 - PubMed
  38. J Am Chem Soc. 2012 Oct 10;134(40):16662-70 - PubMed
  39. Langmuir. 2016 Jun 28;32(25):6445-58 - PubMed
  40. Nanoscale. 2015 Nov 28;7(44):18464-70 - PubMed
  41. Circ Res. 2006 Oct 27;99(9):970-8 - PubMed
  42. Analyst. 2016 Jun 7;141(11):3126-40 - PubMed
  43. J Am Chem Soc. 2008 Sep 3;130(35):11602-3 - PubMed
  44. J Phys Chem B. 2015 Aug 13;119(32):10191-7 - PubMed
  45. Chem Commun (Camb). 2014 Jul 18;50(56):7459-62 - PubMed
  46. Nano Lett. 2016 Oct 3;:null - PubMed
  47. J Am Chem Soc. 2014 Jan 29;136(4):1182-5 - PubMed
  48. J Am Chem Soc. 2010 Jan 27;132(3):932-4 - PubMed
  49. Sci Rep. 2016 Nov 21;6:37596 - PubMed
  50. Adv Mater. 2014 Jul 9;26(26):4565-8 - PubMed
  51. Chem Commun (Camb). 2015 Oct 21;51(82):15165-8 - PubMed
  52. Angew Chem Int Ed Engl. 2016 Jan 18;55(3):922-6 - PubMed
  53. Nano Lett. 2010 Jul 14;10(7):2568-73 - PubMed

Publication Types