Display options
Share it on

J Cancer. 2017 Jul 05;8(11):2088-2096. doi: 10.7150/jca.19373. eCollection 2017.

Characterization of the Role of the Malate Dehydrogenases to Lung Tumor Cell Survival.

Journal of Cancer

Boxi Zhang, Johan Tornmalm, Jerker Widengren, Helin Vakifahmetoglu-Norberg, Erik Norberg

Affiliations

  1. Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77, Stockholm, Sweden.
  2. Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden.

PMID: 28819410 PMCID: PMC5559971 DOI: 10.7150/jca.19373

Abstract

Cellular compartmentalization of biochemical processes in eukaryotic cells is critical for many functions including shuttling of reducing equivalents across membranes. Although coordination of metabolic flux between different organelles is vital for cell physiology, its impact on tumor cell survival is not well understood. By using an integrative approach, we have dissected the role of the key metabolic enzymes Malate dehydrogenases (MDH1 and MDH2) to the survival of Non-small Cell Lung Carcinomas. Here, we report that while both the MDH1 (cytosolic) and the MDH2 (mitochondrial) enzymes display elevated levels in patients compared to normal counterparts, only high expression of MDH1 is associated with poor prognosis. We further show that the MDH1 enzymatic activity is significantly higher in NSCLC cells than that of MDH2. Accordingly, genetic depletion of MDH1 leads to significantly higher toxicity than depletion of MDH2. These findings provide molecular insights into the metabolic characteristics of the malate isoenzymes and mark MDH1 as a potential therapeutic target in these tumors.

Keywords: Cancer Metabolism; Lung Cancer; Malate dehydrogenase

Conflict of interest statement

Competing Interests: The authors declare no conflicts of interest.

References

  1. Cancer Res. 1983 Dec;43(12 Pt 1):5895-901 - PubMed
  2. Nature. 1967 Jun 24;214(5095):1328-30 - PubMed
  3. Bioinformatics. 2013 Jan 15;29(2):281-3 - PubMed
  4. Anal Chem. 2007 May 1;79(9):3330-41 - PubMed
  5. Anal Chem. 2008 Dec 15;80(24):9589-96 - PubMed
  6. Cell Death Differ. 2008 Dec;15(12):1857-64 - PubMed
  7. Anal Chem. 2011 Apr 1;83(7):2786-93 - PubMed
  8. Gen Physiol Biophys. 2002 Sep;21(3):257-65 - PubMed
  9. EMBO J. 2010 Nov 17;29(22):3869-78 - PubMed
  10. J Natl Cancer Inst. 1984 Feb;72(2):217-24 - PubMed
  11. Trends Cell Biol. 2014 Feb;24(2):118-27 - PubMed
  12. Biochemistry. 1967 Feb;6(2):603-10 - PubMed
  13. Biochem J. 2007 Mar 1;402(2):205-18 - PubMed
  14. J R Soc Interface. 2010 Aug 6;7(49):1135-44 - PubMed
  15. J Natl Cancer Inst. 2015 Mar 11;107(5):null - PubMed
  16. BMC Bioinformatics. 2008 Nov 28;9:504 - PubMed
  17. Cancer Res. 1963 May;23:539-45 - PubMed
  18. Cell Rep. 2017 Jun 13;19(11):2289-2303 - PubMed
  19. Cell. 2015 Jul 30;162(3):540-51 - PubMed
  20. Anal Chem. 2015 Jun 2;87(11):5690-7 - PubMed
  21. Adv Enzymol Relat Areas Mol Biol. 1967;29:321-90 - PubMed
  22. Thorac Cancer. 2014 May;5(3):211-8 - PubMed
  23. Biochem Biophys Res Commun. 2017 Jan 15;482(3):426-431 - PubMed
  24. PLoS One. 2012;7(3):e32996 - PubMed
  25. Biophys J. 2015 Jan 20;108(2):420-30 - PubMed
  26. Cancer Res. 1952 Jan;12(1):44-9 - PubMed
  27. Cancer Res. 1984 Mar;44(3):1058-62 - PubMed
  28. Biochemistry. 1972 Jun 20;11(13):2499-502 - PubMed
  29. J Biol Chem. 1983 Oct 10;258(19):11636-42 - PubMed
  30. Cell. 2015 Jul 30;162(3):552-63 - PubMed
  31. Metabolism. 1971 Feb;20(2):119-40 - PubMed
  32. J Biol Chem. 1961 Oct;236:2794-803 - PubMed

Publication Types