Display options
Share it on

Sci Rep. 2017 Aug 08;7(1):7584. doi: 10.1038/s41598-017-07996-x.

Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet.

Scientific reports

S Bordács, A Butykai, B G Szigeti, J S White, R Cubitt, A O Leonov, S Widmann, D Ehlers, H-A Krug von Nidda, V Tsurkan, A Loidl, I Kézsmárki

Affiliations

  1. Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary.
  2. Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232, Villigen, Switzerland.
  3. Institut Laue-Langevin, 6 rue Jules Horowitz, 38042, Grenoble, France.
  4. Center for Chiral Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
  5. Department of Chemistry, Faculty of Science, Hiroshima University Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8526, Japan.
  6. Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.
  7. Institute of Applied Physics, Academy of Sciences of Moldova, MD, 2028, Chisinau, Republic of Moldova.
  8. Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary. [email protected].
  9. Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany. [email protected].

PMID: 28790441 PMCID: PMC5548730 DOI: 10.1038/s41598-017-07996-x

Abstract

The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV

References

  1. Nat Nanotechnol. 2016 May;11(5):449-54 - PubMed
  2. Nat Mater. 2011 Feb;10(2):106-9 - PubMed
  3. J Cryst Growth. 2011 May 15;323(1):363-367 - PubMed
  4. Nat Nanotechnol. 2017 Feb;12 (2):123-126 - PubMed
  5. Nano Lett. 2014;14(4):2026-32 - PubMed
  6. Sci Rep. 2016 May 10;6:25748 - PubMed
  7. Nature. 2006 Aug 17;442(7104):797-801 - PubMed
  8. J Phys Condens Matter. 2015 Dec 23;27(50):503001 - PubMed
  9. Phys Rev Lett. 2014 Sep 5;113(10):107203 - PubMed
  10. Nat Mater. 2016 May;15(5):501-6 - PubMed
  11. Nat Nanotechnol. 2013 Dec;8(12):899-911 - PubMed
  12. Science. 2009 Feb 13;323(5916):915-9 - PubMed
  13. Nat Commun. 2015 Oct 13;6:8539 - PubMed
  14. Nano Lett. 2012 Mar 14;12(3):1673-7 - PubMed
  15. J Phys Condens Matter. 2010 Apr 28;22(16):164207 - PubMed
  16. Nat Nanotechnol. 2015 Dec;10(12):1039-42 - PubMed
  17. Phys Rev Lett. 2015 May 1;114(17):177203 - PubMed
  18. Nat Mater. 2016 Dec;15(12 ):1237-1242 - PubMed
  19. Phys Rev Lett. 2012 Jan 6;108(1):017206 - PubMed
  20. Nat Commun. 2015 Sep 23;6:8275 - PubMed
  21. Phys Rev Lett. 2014 Aug 15;113(7):077202 - PubMed
  22. Science. 2013 Aug 9;341(6146):636-9 - PubMed
  23. Nat Nanotechnol. 2013 Mar;8(3):152-6 - PubMed
  24. Nat Nanotechnol. 2013 Nov;8(11):839-44 - PubMed
  25. Science. 2012 Apr 13;336(6078):198-201 - PubMed
  26. Nat Nanotechnol. 2015 Jul;10(7):589-92 - PubMed
  27. Sci Adv. 2015 Nov 13;1(10):e1500916 - PubMed
  28. Nat Mater. 2015 Nov;14(11):1116-22 - PubMed
  29. Nat Nanotechnol. 2013 Oct;8(10):723-8 - PubMed
  30. Phys Rev Lett. 2011 Nov 18;107(21):217206 - PubMed
  31. J Phys Condens Matter. 2017 Feb 15;29(6):065803 - PubMed
  32. Sci Rep. 2017 Mar 15;7:44663 - PubMed
  33. Phys Rev Lett. 2015 Nov 13;115(20):207601 - PubMed
  34. Nature. 2010 Jun 17;465(7300):901-4 - PubMed
  35. Nat Nanotechnol. 2014 May;9(5):337-42 - PubMed
  36. Nat Commun. 2015 Jul 02;6:7638 - PubMed

Publication Types