Display options
Share it on

Nanomaterials (Basel). 2017 Aug 18;7(8). doi: 10.3390/nano7080225.

Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR.

Nanomaterials (Basel, Switzerland)

Debora Bonvin, Duncan T L Alexander, Angel Millán, Rafael Piñol, Beatriz Sanz, Gerardo F Goya, Abelardo Martínez, Jessica A M Bastiaansen, Matthias Stuber, Kurt J Schenk, Heinrich Hofmann, Marijana Mionić Ebersold

Affiliations

  1. Powder Technology Laboratory, Institute of Matesrials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. [email protected].
  2. Interdisciplinary Centre for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. [email protected].
  3. Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain. [email protected].
  4. Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain. [email protected].
  5. Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain. [email protected].
  6. Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain. [email protected].
  7. Grupo de Electrónica de Potencia y Microelectrónica, I3A, Universidad de Zaragoza, 50018 Zaragoza, Spain. [email protected].
  8. Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland. [email protected].
  9. Center for Biomedical Imaging (CIBM), 1011 Lausanne, Switzerland. [email protected].
  10. Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland. [email protected].
  11. Center for Biomedical Imaging (CIBM), 1011 Lausanne, Switzerland. [email protected].
  12. CCC-IPSB, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. [email protected].
  13. Powder Technology Laboratory, Institute of Matesrials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. [email protected].
  14. Powder Technology Laboratory, Institute of Matesrials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. [email protected].
  15. Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland. [email protected].
  16. Center for Biomedical Imaging (CIBM), 1011 Lausanne, Switzerland. [email protected].

PMID: 28820442 PMCID: PMC5575707 DOI: 10.3390/nano7080225

Abstract

Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to

Keywords: MRI relaxivity; aqueous synthesis; hydrothermal treatment; iron oxide nanoparticles; magnetic nanoparticle; saturation magnetization; specific absorption rate

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Free Radic Biol Med. 2013 Dec;65:1174-94 - PubMed
  2. Nanomedicine (Lond). 2013 Jun;8(6):969-81 - PubMed
  3. Nanomaterials (Basel). 2017 Feb 10;7(2): - PubMed
  4. J Colloid Interface Sci. 1998 Jul 15;203(2):383-91 - PubMed
  5. Nanomaterials (Basel). 2017 Mar 28;7(4): - PubMed
  6. Nanoscale. 2010 Nov;2(11):2470-7 - PubMed
  7. Nano Lett. 2012 Jul 11;12(7):3716-21 - PubMed
  8. Adv Funct Mater. 2014 Aug 6;24(29):4584-4594 - PubMed
  9. J Chem Phys. 2015 Jul 28;143(4):044705 - PubMed
  10. ACS Nano. 2015 Mar 24;9(3):3134-42 - PubMed
  11. Nanoscale. 2011 Jan;3(1):225-32 - PubMed
  12. Angew Chem Int Ed Engl. 2010 Aug 23;49(36):6328-32 - PubMed
  13. Angew Chem Int Ed Engl. 2008;47(41):7857-60 - PubMed
  14. Nanomaterials (Basel). 2016 Nov 12;6(11): - PubMed
  15. Adv Mater. 2011 Nov 23;23(44):5243-9 - PubMed
  16. J Am Chem Soc. 2008 Oct 8;130(40):13234-9 - PubMed
  17. Nanomaterials (Basel). 2015 Jan 09;5(1):63-89 - PubMed
  18. Small. 2013 May 27;9(9-10):1450-66 - PubMed
  19. J Phys Chem B. 2006 Sep 14;110(36):17763-71 - PubMed
  20. Nanomaterials (Basel). 2017 May 10;7(5): - PubMed
  21. Nano Lett. 2012 Jun 13;12(6):3127-31 - PubMed
  22. Nat Commun. 2013;4:2266 - PubMed
  23. Nano Lett. 2011 Mar 9;11(3):1395-400 - PubMed
  24. Int J Mol Sci. 2015 Apr 28;16(5):9573-87 - PubMed
  25. J Nanosci Nanotechnol. 2008 Jun;8(6):2836-57 - PubMed
  26. Nano Lett. 2010 Nov 10;10 (11):4607-13 - PubMed
  27. Nat Nanotechnol. 2011 Jun 26;6(7):418-22 - PubMed
  28. Magn Reson Med. 1995 Aug;34(2):227-33 - PubMed
  29. Nanotechnology. 2014 Nov 14;25(45):452001 - PubMed
  30. Nanomedicine (Lond). 2016 Jul;11(14):1889-910 - PubMed
  31. Dalton Trans. 2013 Feb 14;42(6):2146-57 - PubMed
  32. Chem Commun (Camb). 2004 Mar 7;(5):481-7 - PubMed
  33. ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1219-1225 - PubMed
  34. Adv Mater. 2014 Jan 15;26(2):235-57 - PubMed
  35. ACS Nano. 2011 Aug 23;5(8):6279-96 - PubMed
  36. Nanomaterials (Basel). 2016 May 26;6(6): - PubMed
  37. Sci Rep. 2013;3:1652 - PubMed
  38. Nano Lett. 2007 Aug;7(8):2422-7 - PubMed
  39. ACS Nano. 2017 Jul 25;11(7):6808-6816 - PubMed
  40. Nanomaterials (Basel). 2016 Nov 25;6(12 ): - PubMed
  41. Nano Lett. 2016 Feb 10;16(2):1345-51 - PubMed
  42. Chem Rev. 2008 Jun;108(6):2064-110 - PubMed
  43. Angew Chem Int Ed Engl. 2004 Dec 17;44(1):123-6 - PubMed
  44. Angew Chem Int Ed Engl. 2003 May 30;42(21):2350-65 - PubMed

Publication Types