Display options
Share it on

ChemistryOpen. 2017 Jul 17;6(4):534-540. doi: 10.1002/open.201700093. eCollection 2017 Aug.

Highly Atom Economic Synthesis of d-2-Aminobutyric Acid through an In Vitro Tri-enzymatic Catalytic System.

ChemistryOpen

Xi Chen, Yunfeng Cui, Xinkuan Cheng, Jinhui Feng, Qiaqing Wu, Dunming Zhu

Affiliations

  1. National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.
  2. University of Chinese Academy of Sciences Beijing 100049 P.R. China.

PMID: 28794949 PMCID: PMC5542762 DOI: 10.1002/open.201700093

Abstract

d-2-Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by-product is a pressing demand. A tri-enzymatic catalytic system, which is composed of l-threonine ammonia lyase (l-TAL), d-amino acid dehydrogenase (d-AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d-2-aminobutyric acid with high optical purity. In this cascade reaction, the readily available l-threonine serves as the starting material, carbon dioxide and water are the by-products. d-2-Aminobutyric acid was obtained with >90 % yield and >99 % enantioselective excess, even without adding external ammonia, demonstrating that the ammonia from the first reaction can serve as the amino donor for the reductive amination step. This multi-enzymatic system provides an attractive method with high atomic economy for the synthesis of d-α-amino acids from the corresponding l-α-amino acids, which are readily produced by fermentation.

Keywords: atom economy; d-2-aminobutyric acid; d-aminoacid dehydrogenase; enzymatic cascade; l-threonine ammonia lyase

References

  1. Bioorg Med Chem. 2015 Jul 1;23(13):3809-18 - PubMed
  2. Chembiochem. 2014 Jan 24;15(2):217-22 - PubMed
  3. Bioorg Med Chem Lett. 2008 Jan 15;18(2):732-7 - PubMed
  4. Biochem J. 1981 Apr 1;195(1):61-9 - PubMed
  5. Biochem Biophys Res Commun. 1993 Apr 30;192(2):976-81 - PubMed
  6. Bioresour Technol. 2011 Jan;102(2):1528-36 - PubMed
  7. J Am Chem Soc. 2006 Aug 23;128(33):10923-9 - PubMed
  8. Org Lett. 2006 Jun 22;8(13):2659-62 - PubMed
  9. Appl Environ Microbiol. 2008 Jul;74(13):3949-58 - PubMed
  10. J Biol Chem. 1971 Aug 10;246(15):4878-85 - PubMed
  11. Appl Environ Microbiol. 2013 Aug;79(16):5078-81 - PubMed
  12. Biotechnol Lett. 2014 Apr;36(4):835-41 - PubMed
  13. ChemMedChem. 2013 Aug;8(8):1295-313 - PubMed
  14. Chemistry. 2004 Sep 6;10(17):4334-40 - PubMed
  15. Appl Environ Microbiol. 2012 Dec;78(24):8595-600 - PubMed
  16. Chem Commun (Camb). 2003 Feb 7;(3):426-7 - PubMed
  17. Chembiochem. 2016 Apr 15;17(8):759-67 - PubMed
  18. Chem Biodivers. 2010 Jun;7(6):1491-530 - PubMed
  19. Biol Pharm Bull. 2005 Sep;28(9):1585-9 - PubMed
  20. Biosci Biotechnol Biochem. 2007 May;71(5):1338-41 - PubMed
  21. ChemistryOpen. 2017 Jul 17;6(4):534-540 - PubMed
  22. J Bacteriol. 1977 Oct;132(1):282-93 - PubMed
  23. J Am Chem Soc. 2009 Jun 3;131(21):7208-9 - PubMed
  24. Biotechnol Lett. 2012 Sep;34(9):1693-9 - PubMed
  25. Eur J Biochem. 1987 Jan 2;162(1):179-89 - PubMed
  26. J Biol Chem. 1991 Mar 25;266(9):5801-7 - PubMed
  27. J Am Chem Soc. 1965 Oct 5;87(19):4373-80 - PubMed

Publication Types