Display options
Share it on

Sci Rep. 2017 Aug 01;7(1):7015. doi: 10.1038/s41598-017-07173-0.

Thermal conductivity measurements of proton-heated warm dense aluminum.

Scientific reports

A McKelvey, G E Kemp, P A Sterne, A Fernandez-Panella, R Shepherd, M Marinak, A Link, G W Collins, H Sio, J King, R R Freeman, R Hua, C McGuffey, J Kim, F N Beg, Y Ping

Affiliations

  1. Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
  2. University of Michigan, Nuclear Engineering Department, Ann Arbor, MI, 48109, USA.
  3. Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA, 02139, USA.
  4. The Ohio State University, Physics Department, Columbus, Ohio, 43210, USA.
  5. University of California San Diego, Center for Energy Research, La Jolla, CA, 92093, USA.
  6. Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA. [email protected].

PMID: 28765571 PMCID: PMC5539319 DOI: 10.1038/s41598-017-07173-0

Abstract

Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions.

References

  1. Phys Rev Lett. 2012 Aug 10;109(6):065002 - PubMed
  2. Phys Rev Lett. 2008 Jul 4;101(1):015002 - PubMed
  3. Nature. 2012 Apr 11;485(7398):355-8 - PubMed
  4. Phys Rev A Gen Phys. 1988 Feb 15;37(4):1284-1297 - PubMed
  5. Phys Rev Lett. 2013 Jun 28;110(26):265003 - PubMed
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):013105 - PubMed
  7. Nature. 2012 Jan 25;482(7383):59-62 - PubMed
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):025401 - PubMed
  9. Phys Rev Lett. 1988 Nov 14;61(20):2364-2367 - PubMed
  10. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt B):7191-200 - PubMed
  11. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):895-905 - PubMed
  12. Phys Rev Lett. 1994 May 23;72(21):3351-3354 - PubMed
  13. Phys Rev B Condens Matter. 1985 Apr 1;31(7):4220-4229 - PubMed
  14. Phys Rev Lett. 2003 Sep 19;91(12):125004 - PubMed
  15. Nat Commun. 2015 Mar 03;6:6397 - PubMed
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):023104 - PubMed
  17. Phys Rev E. 2017 Mar;95(3-1):033203 - PubMed
  18. Phys Rev Lett. 2011 Oct 14;107(16):165003 - PubMed
  19. Phys Rev Lett. 2006 Jun 30;96(25):255003 - PubMed
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):043105 - PubMed
  21. Phys Rev Lett. 2015 Sep 11;115(11):115001 - PubMed
  22. Phys Rev Lett. 2013 Mar 29;110(13):135001 - PubMed

Publication Types