Display options
Share it on

Transplant Direct. 2017 Jun 19;3(7):e174. doi: 10.1097/TXD.0000000000000699. eCollection 2017 Jul.

Acute Rejection After Kidney Transplantation Associates With Circulating MicroRNAs and Vascular Injury.

Transplantation direct

Roel Bijkerk, Barend W Florijn, Meriem Khairoun, Jacques M G J Duijs, Gurbey Ocak, Aiko P J de Vries, Alexander F Schaapherder, Marko J K Mallat, Johan W de Fijter, Ton J Rabelink, Anton Jan van Zonneveld, Marlies E J Reinders

Affiliations

  1. Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands.
  2. Einthoven Laboratory for Experimental Vascular Research, Leiden University Medical Center, The Netherlands.
  3. Department of Clinical Epidemiology, Leiden University Medical Center, The Netherlands.
  4. Department of Surgery, Leiden University Medical Center, The Netherlands.

PMID: 28706977 PMCID: PMC5498015 DOI: 10.1097/TXD.0000000000000699

Abstract

BACKGROUND: Acute rejection (AR) of kidney transplants is associated with the loss of endothelial integrity, microvascular rarefaction and, ultimately, graft dysfunction. Circulating angiogenic microRNAs (miRNAs) may serve as markers for microvascular injury. Here, we investigated the short- and long-term effects of AR after kidney transplantation on systemic vascular injury and the associated circulating miRNA profile.

METHODS: Systemic vascular injury was determined by measuring capillary tortuosity and density within the oral mucosa as well as by assessing circulating levels of angiopoietin-2/angiopoietin-1 ratio, vascular endothelial growth factor and soluble thrombomodulin. After a pilot study, we selected 48 miRNAs to assess the AR- and microvascular injury associated circulating miRNAs.

RESULTS: In stable transplant recipients (n = 25) and patients with AR (n = 13), which were also studied longitudinally (1, 6, and 12 months post-AR), we found an AR-associated increase in markers of systemic vascular injury, of which vascular endothelial growth factor and soluble thrombomodulin normalized within 1 year after AR. Of the 48 selected miRNAs, 8 were either decreased (miR-135a, miR-199a-3p, and miR-15a) or increased (miR-17, miR-140-3p, miR-130b, miR-122 and miR-192) in AR. Of these, miR-130b, miR-199a, and miR-192 associated with markers of vascular injury, whereas miR-140-3p, miR-130b, miR-122, and miR-192 normalized within 1 year after AR.

CONCLUSIONS: AR after kidney transplantation is characterized by systemic microvascular injury and associates with specific circulating miRNA levels.

Conflict of interest statement

The authors declare no conflicts of interest.

References

  1. Nat Cell Biol. 2011 Apr;13(4):423-33 - PubMed
  2. Am J Transplant. 2016 Jan;16(1):99-110 - PubMed
  3. J Am Soc Nephrol. 2014 Aug;25(8):1710-22 - PubMed
  4. Pediatr Transplant. 2000 Nov;4(4):252-60 - PubMed
  5. Am J Physiol Renal Physiol. 2002 Jun;282(6):F1140-9 - PubMed
  6. J Clin Invest. 2017 Apr 3;127(4):1375-1391 - PubMed
  7. Mol Oncol. 2014 May;8(3):689-703 - PubMed
  8. Circ Res. 2012 Feb 3;110(3):483-95 - PubMed
  9. Diabetologia. 2013 Oct;56(10):2275-85 - PubMed
  10. Nat Cell Biol. 2007 Jun;9(6):654-9 - PubMed
  11. N Engl J Med. 2016 Jan 28;374(4):333-43 - PubMed
  12. Transplantation. 2013 Mar 27;95(6):835-41 - PubMed
  13. Nature. 2017 Feb 23;542(7642):450-455 - PubMed
  14. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5003-8 - PubMed
  15. Transplantation. 2015 Sep;99(9):1882-93 - PubMed
  16. Transplantation. 2014 Feb 27;97(4):e28-30 - PubMed
  17. Kidney Int. 2016 Jun;89(6):1268-80 - PubMed
  18. Am J Transplant. 2015 Apr;15(4):1081-90 - PubMed
  19. Transpl Immunol. 2015 Sep;33(1):1-6 - PubMed
  20. J Transl Med. 2015 Nov 04;13:344 - PubMed
  21. Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2547-57 - PubMed
  22. Nat Commun. 2016 Apr 04;7:11169 - PubMed
  23. Free Radic Biol Med. 2013 Sep;64:85-94 - PubMed
  24. J Am Soc Nephrol. 2006 Apr;17(4):932-42 - PubMed
  25. J Immunol Res. 2015;2015:391797 - PubMed
  26. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5330-5 - PubMed
  27. Am J Transplant. 2013 May;13(5):1272-81 - PubMed
  28. Transplant Proc. 2015 Jul-Aug;47(6):1683-7 - PubMed
  29. Nat Commun. 2015 Jun 18;6:7321 - PubMed
  30. Sci Rep. 2015 Aug 28;5:12644 - PubMed
  31. Transpl Immunol. 2016 Nov;39:52-59 - PubMed
  32. Transplantation. 1989 Sep;48(3):408-14 - PubMed
  33. Transplantation. 2013 Jan 15;95(1):142-7 - PubMed
  34. J Clin Invest. 2014 Aug;124(8):3514-28 - PubMed
  35. Neoplasia. 2013 Sep;15(9):1086-99 - PubMed
  36. J Cell Sci. 2016 Feb 15;129(4):693-705 - PubMed
  37. Am J Kidney Dis. 2009 May;53(5):770-8 - PubMed
  38. Nephrology (Carlton). 2016 Jul;21 Suppl 1:26-30 - PubMed
  39. Transplant Proc. 2002 May;34(3):922-3 - PubMed
  40. Diab Vasc Dis Res. 2013 Mar;10 (2):123-34 - PubMed
  41. J Clin Invest. 2003 Dec;112(11):1655-65 - PubMed
  42. Cancer Lett. 2013 Jan 1;328(1):18-26 - PubMed
  43. Transpl Immunol. 2008 Apr;19(1):81-5 - PubMed
  44. J Clin Invest. 2007 Dec;117(12):3645-8 - PubMed
  45. Nephrol Dial Transplant. 2011 Nov;26(11):3794-802 - PubMed
  46. Front Immunol. 2012 Apr 02;3:54 - PubMed
  47. Am J Physiol Renal Physiol. 2001 Nov;281(5):F887-99 - PubMed
  48. J Am Soc Nephrol. 2010 Mar;21(3):438-47 - PubMed
  49. Transplantation. 2003 Jul 15;76(1):224-30 - PubMed
  50. Circ Res. 2013 Jul 19;113(3):322-6 - PubMed
  51. Nat Rev Nephrol. 2012 Feb 07;8(4):244-50 - PubMed
  52. Nat Med. 2010 Aug;16(8):909-14 - PubMed

Publication Types