Display options
Share it on

Cancers (Basel). 2017 Aug 10;9(8). doi: 10.3390/cancers9080105.

The Role of Cancer-Derived Exosomes in Tumorigenicity & Epithelial-to-Mesenchymal Transition.

Cancers

Robert H Blackwell, Kimberly E Foreman, Gopal N Gupta

Affiliations

  1. Department of Urology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA. [email protected].
  2. Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA. [email protected].
  3. Department of Urology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA. [email protected].

PMID: 28796150 PMCID: PMC5575608 DOI: 10.3390/cancers9080105

Abstract

Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells lose their basement membrane interaction and acquire a more migratory, mesenchymal phenotype. EMT has been implicated in cancer cell progression, as cells transform and increase motility and invasiveness, induce angiogenesis, and metastasize. Exosomes are 30-100 nm membrane-bound vesicles that are formed and excreted by all cell types and released into the extracellular environment. Exosomal contents include DNA, mRNA, miRNA, as well as transmembrane- and membrane-bound proteins derived from their host cell contents. Exosomes are involved in intercellular signaling, both by membrane fusion to recipient cells with deposition of exosomal contents into the cytoplasm and by the binding of recipient cell membrane receptors. Recent work has implicated cancer-derived exosomes as an important mediator of intercellular signaling and EMT, with resultant transformation of cancer cells to a more aggressive phenotype, as well as the tropism of metastatic disease in specific cancer types with the establishment of the pre-metastatic niche.

Keywords: epithelial-mesenchymal transition; exosomes; intercellular signaling peptides and proteins; neoplasm invasiveness; neoplasm metastasis; neovascularization; pathologic

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. PLoS One. 2015 Mar 23;10(3):e0117495 - PubMed
  2. Annu Rev Cell Dev Biol. 2011;27:347-76 - PubMed
  3. Cancer Cell. 2014 Apr 14;25(4):501-15 - PubMed
  4. Mol Cell Proteomics. 2010 Jun;9(6):1085-99 - PubMed
  5. Colloids Surf B Biointerfaces. 2011 Oct 1;87(1):146-50 - PubMed
  6. J Cell Sci. 2000 Oct;113 Pt 19:3365-74 - PubMed
  7. Exp Cell Res. 2008 Jan 1;314(1):143-52 - PubMed
  8. J Clin Invest. 2007 Dec;117(12 ):3810-20 - PubMed
  9. Cell Res. 2009 Feb;19(2):156-72 - PubMed
  10. Nat Cell Biol. 2007 Jun;9(6):654-9 - PubMed
  11. J Neurooncol. 2013 May;113(1):1-11 - PubMed
  12. Mol Med Rep. 2013 Jul;8(1):272-6 - PubMed
  13. Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 - PubMed
  14. Biochim Biophys Acta. 2014 Jan;1841(1):108-20 - PubMed
  15. J Clin Invest. 2009 Jun;119(6):1420-8 - PubMed
  16. Am J Pathol. 2009 May;174(5):1588-93 - PubMed
  17. Cancer Res. 2007 Apr 1;67(7):2912-5 - PubMed
  18. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):711-6 - PubMed
  19. J Urol. 2014 Aug;192(2):583-92 - PubMed
  20. Mol Cancer. 2014 Apr 26;13:88 - PubMed
  21. J Burn Care Res. 2012 May-Jun;33(3):311-8 - PubMed
  22. Development. 2016 Jul 15;143(14):2482-93 - PubMed
  23. Blood. 2012 Jan 19;119(3):756-66 - PubMed
  24. Biochim Biophys Acta. 2011 Dec;1816(2):119-31 - PubMed
  25. Oncogene. 2017 Aug 24;36(34):4929-4942 - PubMed
  26. Semin Cell Dev Biol. 2015 Apr;40:60-71 - PubMed
  27. Liver Int. 2010 May;30(5):669-82 - PubMed
  28. Exp Cell Res. 2013 Oct 15;319(17):2747-57 - PubMed
  29. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  30. Sci Rep. 2016 Dec 08;6:38750 - PubMed
  31. Cell Death Differ. 2008 Jan;15(1):80-8 - PubMed
  32. Curr Biol. 2011 May 10;21(9):779-86 - PubMed
  33. BMC Neurosci. 2012 Nov 23;13:144 - PubMed
  34. Front Oncol. 2012 Apr 17;2:38 - PubMed
  35. J Urol. 2016 May;195(5):1331-9 - PubMed
  36. Oncotarget. 2016 Aug 23;7(34):54852-54866 - PubMed
  37. Nat Cell Biol. 2015 Jun;17(6):816-26 - PubMed
  38. Front Oncol. 2014 Dec 19;4:361 - PubMed
  39. Ann Clin Lab Sci. 2009 Fall;39(4):331-7 - PubMed
  40. Mol Carcinog. 2015 Oct;54(10):1147-58 - PubMed
  41. Mol Med Rep. 2013 Oct;8(4):1272-8 - PubMed
  42. Clin Transl Med. 2014 Oct 15;3:35 - PubMed
  43. Proteomics. 2014 Mar;14(6):699-712 - PubMed
  44. Cancer Res. 2011 Aug 1;71(15):5346-56 - PubMed
  45. J Lipid Res. 2010 Aug;51(8):2105-20 - PubMed
  46. Mol Cancer. 2014 Oct 01;13:226 - PubMed
  47. Biomed Res Int. 2014;2014:619829 - PubMed
  48. Oncotarget. 2015 Jun 30;6(18):15966-83 - PubMed
  49. Oncogene. 2014 Jul 3;33(27):3485-95 - PubMed
  50. PLoS One. 2015 Jun 09;10 (6):e0129603 - PubMed
  51. J Clin Invest. 2004 Aug;114(4):569-81 - PubMed
  52. Nat Med. 2011 Nov 07;17(11):1359-70 - PubMed
  53. Cancer Res. 2010 Dec 1;70(23 ):9533-7 - PubMed
  54. Cancer Res. 2014 Mar 1;74(5):1566-75 - PubMed
  55. Oncogenesis. 2015 Aug 17;4:e163 - PubMed
  56. In Vivo. 2014 May-Jun;28(3):361-5 - PubMed
  57. J Biol Chem. 2014 Aug 8;289(32):22258-67 - PubMed
  58. Biol Res. 2013;46(1):5-11 - PubMed
  59. Nat Rev Cancer. 2003 Jun;3(6):401-10 - PubMed
  60. Nature. 2011 May 19;473(7347):298-307 - PubMed
  61. J Signal Transduct. 2012;2012:289243 - PubMed
  62. Mol Carcinog. 2015 Jul;54(7):554-65 - PubMed
  63. Angiogenesis. 2012 Mar;15(1):33-45 - PubMed
  64. Clin Cancer Res. 2016 Sep 1;22(17):4517-24 - PubMed
  65. Cancer Cell. 2016 Aug 8;30(2):243-256 - PubMed
  66. Nature. 2015 Nov 19;527(7578):329-35 - PubMed
  67. Curr Angiogenes. 2013;2(1):54-59 - PubMed
  68. J Extracell Vesicles. 2014 Dec 22;3:26913 - PubMed
  69. Kidney Int. 2012 Nov;82(9):1024-32 - PubMed

Publication Types