Display options
Share it on

Nanomaterials (Basel). 2017 Aug 21;7(8). doi: 10.3390/nano7080230.

The Effects of Silica Nanoparticles on Apoptosis and Autophagy of Glioblastoma Cell Lines.

Nanomaterials (Basel, Switzerland)

Rafał Krętowski, Magdalena Kusaczuk, Monika Naumowicz, Joanna Kotyńska, Beata Szynaka, Marzanna Cechowska-Pasko

Affiliations

  1. Department of Pharmaceutical Biochemistry, Medical University of Bia?ystok, Mickiewicza 2A, 15-222 Bia?ystok, Poland. [email protected].
  2. Department of Pharmaceutical Biochemistry, Medical University of Bia?ystok, Mickiewicza 2A, 15-222 Bia?ystok, Poland. [email protected].
  3. Institute of Chemistry, University of Bialystok, K. Cio?kowskiego 1K, 15-245 Bia?ystok, Poland. [email protected].
  4. Institute of Chemistry, University of Bialystok, K. Cio?kowskiego 1K, 15-245 Bia?ystok, Poland. [email protected].
  5. Department of Histology and Embryology, Medical University of Bia?ystok,Waszyngtona 13, 15-269 Bia?ystok, Poland. [email protected].
  6. Department of Pharmaceutical Biochemistry, Medical University of Bia?ystok, Mickiewicza 2A, 15-222 Bia?ystok, Poland. [email protected].

PMID: 28825685 PMCID: PMC5575712 DOI: 10.3390/nano7080230

Abstract

Silica nanoparticles (SiNPs) are one of the most commonly used nanomaterials in various medical applications. However, possible mechanisms of the toxicity caused by SiNPs remain unclear. The study presented here provides novel information on molecular and cellular effects of SiNPs in glioblastoma LBC3 and LN-18 cells. It has been demonstrated that SiNPs of 7 nm, 5-15 nm and 10-20 nm induce time- and dose-dependent cytotoxicity in LBC3 and LN-18 cell lines. In contrast to glioblastoma cells, we observed only weak reduction in viability of normal skin fibroblasts treated with SiNPs. Furthermore, in LBC3 cells treated with 5-15 nm SiNPs we noticed induction of apoptosis and necrosis, while in LN-18 cells only necrosis. The 5-15 nm SiNPs were also found to cause oxidative stress, a loss in mitochondrial membrane potential, and changes in the ultrastructure of the mitochondria in LBC3 cells. Quantitative real-time PCR results showed that in LBC3 cells the mRNA levels of pro-apoptotic genes

Keywords: apoptosis; autophagy; glioblastoma multiforme; nanotoxicity; silica nanoparticles

Conflict of interest statement

The authors report no conflicts of interest in this work.

References

  1. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  2. J Neurosurg. 2003 Feb;98(2):378-84 - PubMed
  3. Free Radic Biol Med. 2003 Jun 15;34(12):1507-16 - PubMed
  4. Exp Cell Res. 2005 Apr 15;305(1):51-62 - PubMed
  5. Toxicol Appl Pharmacol. 2006 Dec 15;217(3):252-9 - PubMed
  6. Autophagy. 2007 May-Jun;3(3):278-81 - PubMed
  7. Environ Health Perspect. 2007 Feb;115(2):187-94 - PubMed
  8. Environ Sci Technol. 2007 Mar 15;41(6):2064-8 - PubMed
  9. J Cell Biol. 2008 Feb 25;180(4):697-704 - PubMed
  10. Autophagy. 2009 Feb;5(2):152-8 - PubMed
  11. Langmuir. 2009 Jun 16;25(12):6856-62 - PubMed
  12. Cell Death Differ. 2009 Jul;16(7):966-75 - PubMed
  13. Toxicol In Vitro. 2010 Apr;24(3):751-8 - PubMed
  14. Part Fibre Toxicol. 2010 Dec 03;7(1):39 - PubMed
  15. Part Fibre Toxicol. 2011 Jan 15;8:1 - PubMed
  16. ACS Nano. 2011 May 24;5(5):3568-76 - PubMed
  17. Trends Cell Biol. 2011 Jul;21(7):387-92 - PubMed
  18. Mol Ther. 2011 Aug;19(8):1538-46 - PubMed
  19. Toxicol In Vitro. 2011 Dec;25(8):1619-29 - PubMed
  20. Biomaterials. 2011 Nov;32(33):8385-93 - PubMed
  21. Int J Nanomedicine. 2011;6:1889-901 - PubMed
  22. Int J Nanomedicine. 2011;6:2821-35 - PubMed
  23. Toxicol Appl Pharmacol. 2012 Mar 1;259(2):160-8 - PubMed
  24. Cell. 2012 Jan 20;148(1-2):213-27 - PubMed
  25. Part Fibre Toxicol. 2012 Jul 23;9:29 - PubMed
  26. PLoS One. 2012;7(8):e42398 - PubMed
  27. Hum Exp Toxicol. 2013 Feb;32(2):186-95 - PubMed
  28. Apoptosis. 2013 Mar;18(3):271-85 - PubMed
  29. Toxicol Ind Health. 2015 May;31(5):475-84 - PubMed
  30. Curr Med Chem. 2013;20(17):2195-211 - PubMed
  31. Nanomedicine (Lond). 2014 Mar;9(3):397-412 - PubMed
  32. Invest Ophthalmol Vis Sci. 2013 Jul 16;54(7):4717-33 - PubMed
  33. Nanomedicine. 2014 Feb;10(2):297-312 - PubMed
  34. Toxicol Lett. 2014 Jan 3;224(1):84-92 - PubMed
  35. Int J Mol Sci. 2014 Feb 21;15(2):3145-53 - PubMed
  36. J Hazard Mater. 2014 Apr 15;270:176-86 - PubMed
  37. Int J Nanomedicine. 2014 Jun 10;9:2863-77 - PubMed
  38. Cancer Epidemiol Biomarkers Prev. 2014 Oct;23(10):1985-96 - PubMed
  39. Mol Cell Biochem. 2015 Jan;398(1-2):165-73 - PubMed
  40. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15344-9 - PubMed
  41. Int J Nanomedicine. 2014 Nov 05;9:5131-41 - PubMed
  42. Int J Nanomedicine. 2014 Dec 15;9 Suppl 2:235-41 - PubMed
  43. J Appl Toxicol. 2015 Jun;35(6):640-50 - PubMed
  44. Cell Signal. 2015 Jun;27(6):1225-36 - PubMed
  45. Int J Nanomedicine. 2015 Feb 20;10:1463-77 - PubMed
  46. Nanomedicine. 2015 Aug;11(6):1407-16 - PubMed
  47. Theranostics. 2015 Mar 01;5(6):631-42 - PubMed
  48. Chem Soc Rev. 2015 Oct 7;44(17):6287-305 - PubMed
  49. Tumour Biol. 2016 Jan;37(1):931-42 - PubMed
  50. Int J Mol Sci. 2015 Dec 10;16(12):29398-416 - PubMed
  51. Langmuir. 2016 Mar 8;32(9):2216-24 - PubMed
  52. Langmuir. 2016 Apr 5;32(13):3217-25 - PubMed
  53. Mol Cell Biochem. 2016 Jun;417(1-2):35-47 - PubMed
  54. Invest New Drugs. 2016 Oct;34(5):552-64 - PubMed
  55. Cancer. 2016 Dec 1;122(23):3740 - PubMed
  56. Int J Nanomedicine. 2016 Oct 11;11:5257-5276 - PubMed
  57. Nanomedicine (Lond). 2016 Dec;11(24):3185-3203 - PubMed
  58. Chem Sci. 2015 Mar 1;6(3):1986-1990 - PubMed
  59. Oncotarget. 2017 Jun 28;8(40):67506-67518 - PubMed
  60. Cancer Res. 1987 Feb 15;47(4):936-42 - PubMed
  61. Anal Biochem. 1985 Oct;150(1):76-85 - PubMed
  62. Nature. 1970 Aug 15;227(5259):680-5 - PubMed

Publication Types