Display options
Share it on

Elife. 2017 Aug 18;6. doi: 10.7554/eLife.29655.

Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in .

eLife

Kathleen Greenham, Carmela Rosaria Guadagno, Malia A Gehan, Todd C Mockler, Cynthia Weinig, Brent E Ewers, C Robertson McClung

Affiliations

  1. Department of Biological Sciences, Dartmouth College, Hanover, United States.
  2. Department of Botany, University of Wyoming, Laramie, United States.
  3. Donald Danforth Plant Science Center, St. Louis, United States.
  4. Department of Molecular Biology, University of Wyoming, Laramie, United States.
  5. Program in Ecology, University of Wyoming, Laramie, United States.

PMID: 28826479 PMCID: PMC5628015 DOI: 10.7554/eLife.29655

Abstract

The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop

Keywords: Brassica rapa; abiotic stress; daily rhythms; drought; photosynthesis; plant biology; transcriptomic network analysis

References

  1. Genome Biol. 2013 Jun 27;14(6):123 - PubMed
  2. Tree Physiol. 2007 Apr;27(4):561-75 - PubMed
  3. Mol Plant. 2012 Sep;5(5):1138-50 - PubMed
  4. Science. 2000 Dec 15;290(5499):2110-3 - PubMed
  5. J Biol Rhythms. 2010 Oct;25(5):372-80 - PubMed
  6. New Phytol. 2016 Apr;210(1):133-44 - PubMed
  7. Front Physiol. 2012 Sep 19;3:347 - PubMed
  8. Nat Genet. 2011 Aug 28;43(10):1035-9 - PubMed
  9. Bioinformation. 2013;9(2):72-8 - PubMed
  10. Crop Sci. 2002 Jan;42(1):122-131 - PubMed
  11. PLoS One. 2014 Jan 29;9(1):e87499 - PubMed
  12. Plant Cell Environ. 2017 Feb;40(2):180-189 - PubMed
  13. Ann Bot. 2002 Feb;89(2):183-9 - PubMed
  14. BMC Genomics. 2016 Oct 20;17 (1):815 - PubMed
  15. Plant Physiol. 2003 Dec;133(4):1702-16 - PubMed
  16. Plant Physiol. 2010 Nov;154(3):1254-71 - PubMed
  17. Plant Physiol. 2015 Sep;169(1):840-55 - PubMed
  18. Plant Cell Environ. 2009 Aug;32(8):980-91 - PubMed
  19. Plant J. 2009 Nov;60(4):703-15 - PubMed
  20. PLoS Comput Biol. 2011 Jan 20;7(1):e1001057 - PubMed
  21. Plant Cell. 2004 Aug;16(8):2048-58 - PubMed
  22. Plant Methods. 2015 Apr 17;11:29 - PubMed
  23. Plant Signal Behav. 2012 Jul;7(7):767-70 - PubMed
  24. Curr Opin Plant Biol. 2015 Apr;24:39-46 - PubMed
  25. Open Biol. 2017 Mar;7(3):null - PubMed
  26. Nat Biotechnol. 2010 May;28(5):511-5 - PubMed
  27. Arch Biochem. 1950 Jan;25(1):191-200 - PubMed
  28. J Exp Bot. 2013 Oct;64(13):3983-98 - PubMed
  29. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17402-7 - PubMed
  30. Plant Physiol. 2011 Mar;155(3):1051-9 - PubMed
  31. J Exp Bot. 2004 May;55(400):1157-66 - PubMed
  32. Ann Bot. 2009 Feb;103(4):551-60 - PubMed
  33. Tree Physiol. 2012 Jun;32(6):764-75 - PubMed
  34. Plant Cell. 2011 Feb;23(2):471-85 - PubMed
  35. BMC Genomics. 2015 Jul 07;16:505 - PubMed
  36. Plant J. 2002 Aug;31(3):279-92 - PubMed
  37. Plant Physiol. 2007 Jan;143(1):4-10 - PubMed
  38. Mamm Genome. 2007 Jul;18(6-7):463-72 - PubMed
  39. Plant Cell Environ. 2007 Jan;30(1):19-30 - PubMed
  40. PLoS Genet. 2008 Feb;4(2):e14 - PubMed
  41. Plant Physiol. 1990 Jun;93(2):642-7 - PubMed
  42. Plant Physiol. 2013 Jul;162(3):1370-7 - PubMed
  43. J Exp Bot. 2014 Feb;65(2):697-708 - PubMed
  44. Plant J. 2010 Sep;63(5):715-27 - PubMed
  45. Plant Physiol. 2009 Jan;149(1):575-84 - PubMed
  46. Annu Rev Plant Biol. 2006;57:781-803 - PubMed
  47. Genome Biol. 2008;9(8):R130 - PubMed
  48. Oecologia. 2008 Mar;155(3):441-54 - PubMed
  49. BMC Bioinformatics. 2008 Dec 29;9:559 - PubMed
  50. Plant Cell. 2015 Oct;27(10 ):2692-708 - PubMed
  51. Int J Mol Sci. 2013 May 30;14(6):11607-25 - PubMed
  52. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):21002-7 - PubMed
  53. Plant Cell. 2008 Apr;20(4):1134-51 - PubMed
  54. Plant Physiol Biochem. 2010 Apr;48(4):256-64 - PubMed
  55. PLoS One. 2011;6(10):e26426 - PubMed
  56. Plant Mol Biol. 2009 Jan;69(1-2):133-53 - PubMed
  57. J Exp Bot. 2007;58(2):221-7 - PubMed
  58. Plant Physiol. 2010 Feb;152(2):876-90 - PubMed
  59. New Phytol. 2014 Oct;204(1):105-15 - PubMed
  60. Plant Cell Physiol. 2014 Jul;55(7):1311-24 - PubMed
  61. J Exp Bot. 2014 Jan;65(1):159-68 - PubMed
  62. Nat Protoc. 2012 Mar 01;7(3):562-78 - PubMed
  63. Trends Plant Sci. 2012 Dec;17(12):693-700 - PubMed
  64. Annu Rev Plant Biol. 2017 Apr 28;68:513-534 - PubMed
  65. PLoS One. 2012;7(5):e33748 - PubMed
  66. J Exp Bot. 2009;60(13):3751-63 - PubMed
  67. Plant Physiol. 2017 Sep;175(1):223-234 - PubMed
  68. Plant Cell. 2006 May;18(5):1292-309 - PubMed
  69. J Exp Bot. 2004 Nov;55(407):2365-84 - PubMed
  70. Mol Plant. 2012 May;5(3):653-68 - PubMed
  71. J Exp Bot. 2015 Jul;66(14):4373-81 - PubMed
  72. J Exp Bot. 2003 Nov;54(392):2393-401 - PubMed
  73. Plant Cell Environ. 2014 Apr;37(4):899-910 - PubMed
  74. J Stat Softw. 2012 Mar;46(11):null - PubMed
  75. Nat Rev Genet. 2015 Oct;16(10):598-610 - PubMed
  76. BMC Plant Biol. 2016 Aug 24;16(1):185 - PubMed
  77. Plant Cell Environ. 2017 Jul;40(7):1153-1162 - PubMed
  78. J Exp Bot. 2014 Apr;65(7):1751-9 - PubMed
  79. Environ Sci Technol. 2014 Aug 19;48(16):9471-7 - PubMed

MeSH terms

Publication Types

Grant support