Display options
Share it on

Scoliosis Spinal Disord. 2017 Jul 23;12:24. doi: 10.1186/s13013-017-0128-9. eCollection 2017.

3D correction of AIS in braces designed using CAD/CAM and FEM: a randomized controlled trial.

Scoliosis and spinal disorders

Nikita Cobetto, Carl-Éric Aubin, Stefan Parent, Soraya Barchi, Isabelle Turgeon, Hubert Labelle

Affiliations

  1. Department of Mechanical Engineering, Polytechnique Montreal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7 Canada.

PMID: 28770254 PMCID: PMC5525241 DOI: 10.1186/s13013-017-0128-9

Abstract

BACKGROUND: Recent studies showed that finite element model (FEM) combined to CAD/CAM improves the design of braces for the conservative treatment of adolescent idiopathic scoliosis (AIS), using 2D measurements from in-brace radiographs. We aim to assess the immediate effectiveness on curve correction in all three planes of braces designed using CAD/CAM and numerical simulation compared to braces designed with CAD/CAM only.

METHODS: SRS standardized criteria for bracing were followed to recruit 48 AIS patients who were randomized into two groups. For both groups, 3D reconstructions of the spine and patient's torso, respectively built from bi-planar radiographs and surface topography, were obtained and braces were designed using the CAD/CAM approach. For the test group, 3D reconstructions of the spine and patient's torso were additionally used to generate a personalized FEM to simulate and iteratively improve the brace design with the objective of curve correction maximization in three planes and brace material minimization.

RESULTS: For the control group (CtrlBraces), average Cobb angle prior to bracing was 29° (thoracic, T) and 25° (lumbar, L) with the planes of maximal curvature (PMC) respectively oriented at 63° and 57° on average with respect to the sagittal plane. Average apical axial rotation prior to bracing was 7° (T) and 9° (L). For the test group (FEMBraces), initial Cobb angles were 33° (T) and 28° (L) with the PMC at 68° (T) and 56° (L) and average apical axial rotation prior to bracing at 9° (T and L). On average, FEMBraces were 50% thinner and had 20% less covering surface than CtrlBraces while reducing T and L curves by 47 and 48%, respectively, compared to 25 and 26% for CtrlBraces. FEMBraces corrected apical axial rotation by 46% compared to 30% for CtrlBraces.

CONCLUSION: The combination of numerical simulation and CAD/CAM approach allowed designing more efficient braces in all three planes, with the advantages of being lighter than standard CAD/CAM braces. Bracing in AIS may be improved in 3D by the use of this simulation platform. This study is ongoing to recruit more cases and to analyze the long-term effect of bracing.

TRIAL REGISTRATION: ClinicalTrials.gov, NCT02285621.

Keywords: Computer-aided design/computer-aided manufacturing; Finite element model (FEM); RCT; Scoliosis; Thoraco-lumbo-sacral orthosis

References

  1. Eur Spine J. 2016 Oct;25(10 ):3056-3064 - PubMed
  2. Eur Spine J. 2007 Nov;16(11):1882-91 - PubMed
  3. Clin Biomech (Bristol, Avon). 2004 Mar;19(3):240-7 - PubMed
  4. Prosthet Orthot Int. 1999 Aug;23(2):135-41 - PubMed
  5. Spine J. 2003 May-Jun;3(3):180-5 - PubMed
  6. Ann Chir. 1996;50(8):641-50 - PubMed
  7. Med Biol Eng Comput. 2004 May;42(3):339-44 - PubMed
  8. Eur Spine J. 2000 Jun;9(3):185-90 - PubMed
  9. Eur Spine J. 2012 Oct;21(10):1957-63 - PubMed
  10. Spine (Phila Pa 1976). 1998 Nov 15;23(22):2404-11 - PubMed
  11. Prosthet Orthot Int. 2005 Apr;29(1):105-11 - PubMed
  12. Spine (Phila Pa 1976). 2010 Aug 15;35(18):1706-13 - PubMed
  13. J Biomech. 1991;24(8):721-32 - PubMed
  14. Spine (Phila Pa 1976). 1997 Mar 15;22(6):629-35 - PubMed
  15. Spine (Phila Pa 1976). 2009 Jan 1;34(1):91-9 - PubMed
  16. Eur Spine J. 2013 Nov;22(11):2449-55 - PubMed
  17. Spine (Phila Pa 1976). 2005 Sep 15;30(18):2068-75; discussion 2076-7 - PubMed
  18. Eur Spine J. 2014 Jul;23 Suppl 4:S419-23 - PubMed
  19. Med Eng Phys. 2009 Jul;31(6):681-7 - PubMed
  20. J Bone Joint Surg Am. 2010 May;92 (5):1073-81 - PubMed
  21. Spine (Phila Pa 1976). 2010 Sep 1;35(19):E940-7 - PubMed
  22. Physiother Theory Pract. 2011 Jan;27(1):74-9 - PubMed
  23. J Pediatr Orthop. 2011 Jan-Feb;31(1 Suppl):S37-45 - PubMed
  24. Dtsch Arztebl Int. 2010 Dec;107(49):875-83; quiz 884 - PubMed
  25. Med Biol Eng Comput. 2011 Jul;49(7):743-53 - PubMed
  26. Ann Chir. 1995;49(8):749-61 - PubMed
  27. Eur Spine J. 2013 Nov;22(11):2445-8 - PubMed
  28. J Orthop Sci. 2001;6(4):316-9 - PubMed
  29. J Bone Joint Surg Am. 1995 Jun;77(6):815-22 - PubMed
  30. Med Biol Eng Comput. 2007 May;45(5):467-73 - PubMed
  31. N Engl J Med. 2013 Oct 17;369(16):1512-21 - PubMed
  32. Spine (Phila Pa 1976). 1996 Jan 1;21(1):59-64 - PubMed
  33. Pediatr Rehabil. 2003 Jul-Dec;6(3-4):201-7 - PubMed
  34. Spine Deform. 2014 Jul;2(4):276-284 - PubMed
  35. Clin Biomech (Bristol, Avon). 2004 Feb;19(2):190-5 - PubMed
  36. Spine J. 2014 Sep 1;14(9):1951-6 - PubMed
  37. Spine (Phila Pa 1976). 2014 May 1;39(10 ):E601-6 - PubMed
  38. Clin Biomech (Bristol, Avon). 2012 Dec;27(10 ):999-1005 - PubMed
  39. Scoliosis. 2014 Jun 13;9:6 - PubMed

Publication Types