Display options
Share it on

Front Immunol. 2017 Jul 10;8:797. doi: 10.3389/fimmu.2017.00797. eCollection 2017.

The Role of Multiscale Protein Dynamics in Antigen Presentation and T Lymphocyte Recognition.

Frontiers in immunology

R Charlotte Eccleston, Shunzhou Wan, Neil Dalchau, Peter V Coveney

Affiliations

  1. Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom.
  2. Microsoft Research, Cambridge, United Kingdom.

PMID: 28740497 PMCID: PMC5502259 DOI: 10.3389/fimmu.2017.00797

Abstract

T lymphocytes are stimulated when they recognize short peptides bound to class I proteins of the major histocompatibility complex (MHC) protein, as peptide-MHC complexes. Due to the diversity in T-cell receptor (TCR) molecules together with both the peptides and MHC proteins they bind to, it has been difficult to design vaccines and treatments based on these interactions. Machine learning has made some progress in trying to predict the immunogenicity of peptide sequences in the context of specific MHC class I alleles but, as such approaches cannot integrate temporal information and lack explanatory power, their scope will always be limited. Here, we advocate a mechanistic description of antigen presentation and TCR activation which is explanatory, predictive, and quantitative, drawing on modeling approaches that collectively span several length and time scales, being capable of furnishing reliable biological descriptions that are difficult for experimentalists to provide. It is a form of multiscale systems biology. We propose the use of chemical rate equations to describe the time evolution of the foreign and host proteins to explain how the original proteins end up being presented on the cell surface as peptide fragments, while we invoke molecular dynamics to describe the key binding processes on the molecular level, including those of peptide-MHC complexes with TCRs which lie at the heart of the immune response. On each level, complementary methods based on machine learning are available, and we discuss the relationship between these divergent approaches. The pursuit of predictive mechanistic modeling approaches requires experimentalists to adapt their work so as to acquire, store, and expose data that can be used to verify and validate such models.

Keywords: MHC-I antigen presentation pathway; binding affinity; machine learning; molecular dynamics; pathway model

References

  1. Curr Opin Struct Biol. 2007 Apr;17(2):166-72 - PubMed
  2. Nat Struct Biol. 2002 Sep;9(9):646-52 - PubMed
  3. Nat Immunol. 2009 Jun;10(6):636-46 - PubMed
  4. Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080): - PubMed
  5. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1505-10 - PubMed
  6. Sci Rep. 2015 Oct 20;5:14928 - PubMed
  7. J Chem Phys. 2004 Jun 22;120(24):11919-29 - PubMed
  8. PLoS Pathog. 2015 Mar 17;11(3):e1004725 - PubMed
  9. Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080): - PubMed
  10. Brief Bioinform. 2015 Nov;16(6):1035-44 - PubMed
  11. Wiley Interdiscip Rev Syst Biol Med. 2012 Nov-Dec;4(6):585-98 - PubMed
  12. Immunogenetics. 1999 Nov;50(3-4):213-9 - PubMed
  13. PLoS Pathog. 2009 Apr;5(4):e1000365 - PubMed
  14. Immunol Today. 1992 Feb;13(2):56-62 - PubMed
  15. PLoS Pathog. 2013 Jan;9(1):e1003129 - PubMed
  16. J Chem Theory Comput. 2014 Mar 11;10(3):1228-1241 - PubMed
  17. Mol Immunol. 2008 Mar;45(5):1221-30 - PubMed
  18. J Comput Chem. 2004 Nov 30;25(15):1803-13 - PubMed
  19. Immunome Res. 2010 Nov 03;6 Suppl 2:S4 - PubMed
  20. J Chem Theory Comput. 2017 Feb 14;13(2):784-795 - PubMed
  21. J Chem Theory Comput. 2015 Jul 14;11(7):3346-56 - PubMed
  22. J Virol. 2007 Jul;81(14):7725-31 - PubMed
  23. PLoS Comput Biol. 2013 Oct;9(10):e1003266 - PubMed
  24. Front Immunol. 2013 Jul 22;4:206 - PubMed
  25. J Gen Virol. 2011 Feb;92(Pt 2):247-68 - PubMed
  26. Nat Rev Immunol. 2008 Aug;8(8):619-30 - PubMed
  27. AIDS Res Hum Retroviruses. 1999 Feb 10;15(3):273-83 - PubMed
  28. Philos Trans A Math Phys Eng Sci. 2005 Aug 15;363(1833):2037-53 - PubMed
  29. Trends Immunol. 2014 Nov 11;35(12):604-612 - PubMed
  30. J Immunol. 1994 Jan 1;152(1):163-75 - PubMed
  31. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6548-53 - PubMed
  32. Science. 2009 Apr 10;324(5924):198-203 - PubMed
  33. Front Immunol. 2015 Jul 17;6:363 - PubMed
  34. J Immunol. 2005 Aug 1;175(3):1715-23 - PubMed
  35. Blood. 2012 Nov 8;120(19):3945-8 - PubMed
  36. Cell Mol Life Sci. 2005 May;62(9):1025-37 - PubMed
  37. Nat Rev Immunol. 2003 Dec;3(12):952-61 - PubMed
  38. Nature. 1977 Jun 16;267(5612):585-90 - PubMed
  39. Nature. 2013 Dec 5;504(7478):96-7 - PubMed
  40. AIDS Res Hum Retroviruses. 1996 Dec 10;12(18):1691-8 - PubMed
  41. PLoS Comput Biol. 2011 Oct;7(10):e1002144 - PubMed
  42. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6630-E6638 - PubMed
  43. Syst Biol (Stevenage). 2005 Sep;152(3):138-52 - PubMed
  44. J Chem Inf Model. 2017 Apr 24;57(4):897-909 - PubMed
  45. J Chem Theory Comput. 2017 Jan 10;13(1):210-222 - PubMed

Publication Types

Grant support