Display options
Share it on

Materials (Basel). 2016 Jun 21;9(6). doi: 10.3390/ma9060498.

Antimicrobial Approaches for Textiles: From Research to Market.

Materials (Basel, Switzerland)

Diana Santos Morais, Rui Miranda Guedes, Maria Ascensão Lopes

Affiliations

  1. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal. [email protected].
  2. INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Rua Dr. Roberto Frias, Porto 4200-465, Portugal. [email protected].
  3. INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Rua Dr. Roberto Frias, Porto 4200-465, Portugal. [email protected].
  4. Departamento de Engenharia Mecânica Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal. [email protected].
  5. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal. [email protected].

PMID: 28773619 PMCID: PMC5456784 DOI: 10.3390/ma9060498

Abstract

The large surface area and ability to retain moisture of textile structures enable microorganisms' growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes' growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics.

Keywords: antibacterial; antimicrobial; durability; environment impact; health impact; textiles

References

  1. Clin Microbiol Rev. 1999 Oct;12(4):564-82 - PubMed
  2. Am J Infect Control. 2000 Apr;28(2):184-96 - PubMed
  3. Emerg Infect Dis. 2001 Mar-Apr;7(2):188-92 - PubMed
  4. Res Microbiol. 2001 Jun;152(5):421-30 - PubMed
  5. J Hosp Infect. 2004 Jun;57(2):97-104 - PubMed
  6. Curr Probl Dermatol. 2006;33:1-16 - PubMed
  7. Curr Probl Dermatol. 2006;33:17-34 - PubMed
  8. Langmuir. 2006 Jun 20;22(13):5636-44 - PubMed
  9. Bioorg Med Chem Lett. 2006 Sep 1;16(17):4512-4 - PubMed
  10. Microb Drug Resist. 2006 Summer;12(2):83-90 - PubMed
  11. J Biomed Mater Res A. 2008 Apr;85(1):99-107 - PubMed
  12. Environ Sci Technol. 2007 Sep 1;41(17):6283-9 - PubMed
  13. J Ethnopharmacol. 2008 Feb 28;116(1):194-7 - PubMed
  14. Eur J Med Chem. 2009 Aug;44(8):3201-8 - PubMed
  15. J Agric Food Chem. 2009 Sep 9;57(17):7712-8 - PubMed
  16. Clin Infect Dis. 2009 Oct 15;49(8):1248-53 - PubMed
  17. Appl Biochem Biotechnol. 2010 Oct;162(3):912-25 - PubMed
  18. Microbiol Res. 2010 Aug 20;165(6):496-504 - PubMed
  19. Biotechnol Adv. 2010 May-Jun;28(3):325-47 - PubMed
  20. Nat Prod Rep. 2010 Feb;27(2):238-54 - PubMed
  21. Microb Drug Resist. 2010 Jun;16(2):91-104 - PubMed
  22. Colloids Surf B Biointerfaces. 2010 Aug 1;79(1):5-18 - PubMed
  23. Environ Sci Technol. 2010 Jun 15;44(12):4545-51 - PubMed
  24. Biochim Biophys Acta. 2011 Jan;1808(1):91-7 - PubMed
  25. Int J Food Microbiol. 2010 Nov 15;144(1):51-63 - PubMed
  26. Langmuir. 2011 Apr 5;27(7):4091-7 - PubMed
  27. Langmuir. 2011 Apr 5;27(7):4020-8 - PubMed
  28. Nat Prod Commun. 2011 Feb;6(2):163-6 - PubMed
  29. Future Med Chem. 2011 Oct;3(14):1821-47 - PubMed
  30. Appl Environ Microbiol. 2012 May;78(10):3614-21 - PubMed
  31. Future Microbiol. 2012 Aug;7(8):979-90 - PubMed
  32. Environ Int. 2013 Mar;53:62-73 - PubMed
  33. Biomacromolecules. 2013 Mar 11;14(3):585-601 - PubMed
  34. Trends Biotechnol. 2013 May;31(5):295-304 - PubMed
  35. Biomed Res Int. 2013;2013:963248 - PubMed
  36. J Mater Sci Mater Med. 2013 Sep;24(9):2145-55 - PubMed
  37. Molecules. 2013 Nov 14;18(11):14122-37 - PubMed
  38. Front Microbiol. 2014 Feb 05;5:23 - PubMed
  39. Biomed Res Int. 2014;2014:761741 - PubMed
  40. J Antimicrob Chemother. 2015 Apr;70(4):1037-46 - PubMed
  41. Int J Mol Sci. 2015 Jan 19;16(1):2099-116 - PubMed
  42. Microb Drug Resist. 2015 Aug;21(4):373-9 - PubMed
  43. Carbohydr Polym. 2015 Oct 20;131:134-41 - PubMed
  44. Materials (Basel). 2013 Jun 05;6(6):2295-2350 - PubMed

Publication Types