Display options
Share it on

Materials (Basel). 2016 Sep 06;9(9). doi: 10.3390/ma9090759.

Carbon Supported Engineering NiCo₂O₄ Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction.

Materials (Basel, Switzerland)

Diab Hassan, Sherif El-Safty, Khalil Abdelrazek Khalil, Montasser Dewidar, Gamal Abu El-Magd

Affiliations

  1. Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan 81521, Egypt. [email protected].
  2. National Institute for Materials Science (NIMS), Research Center for Strategic Materials, 1-2-1Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan. [email protected].
  3. Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan. [email protected].
  4. Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan 81521, Egypt. [email protected].
  5. Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia. [email protected].
  6. Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, Elgaishstreet, Kafrelsheikh 33516, Egypt. [email protected].
  7. Production Engineering and Design Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt. [email protected].

PMID: 28773878 PMCID: PMC5457091 DOI: 10.3390/ma9090759

Abstract

The design of cheap and efficient oxygen reduction reaction (ORR) electrocatalysts is of a significant importance in sustainable and renewable energy technologies. Therefore, ORR catalysts with superb electrocatalytic activity and durability are becoming a necessity but still remain challenging. Herein, we report C/NiCo₂O₄ nanocomposite fibers fabricated by a straightforward electrospinning technique followed by a simple sintering process as a promising ORR electrocatalyst in alkaline condition. The mixed-valence oxide can offer numerous accessible active sites. In addition, the as-obtained C/NiCo₂O₄ hybrid reveals significantly remarkable electrocatalytic performance with a highly positive onset potential of 0.65 V, which is only 50 mV lower than that of commercially available Pt/C catalysts. The analyses indicate that C/NiCo₂O₄ catalyst can catalyze O₂-molecules via direct four electron pathway in a similar behavior as commercial Pt/C catalysts dose. Compared to single NiCo₂O₄ and carbon free NiCo₂O₄, the C/NiCo₂O₄ hybrid displays higher ORR current and more positive half-wave potential. The incorporated carbon matrices are beneficial for fast electron transfer and can significantly impose an outstanding contribution to the electrocatalytic activity. Results indicate that the synthetic strategy hold a potential as efficient route to fabricate highly active nanostructures for practical use in energy technologies.

Keywords: NiCo2O4; ORR; PAN; electrospinning; nanofiber

References

  1. Nat Chem. 2014 Apr;6(4):362-7 - PubMed
  2. Nanoscale. 2013 Jan 7;5(1):134-8 - PubMed
  3. Nanoscale. 2013 Jun 21;5(12):5312-5 - PubMed
  4. J Am Chem Soc. 2013 Aug 21;135(33):12329-37 - PubMed
  5. Science. 2009 Apr 3;324(5923):48-9 - PubMed
  6. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11159-62 - PubMed
  7. Angew Chem Int Ed Engl. 2012 Apr 16;51(16):3892-6 - PubMed
  8. Nat Mater. 2011 Oct;10(10):780-6 - PubMed
  9. Nanomaterials (Basel). 2014 Apr 03;4(2):256-266 - PubMed
  10. ACS Appl Mater Interfaces. 2014 May 28;6(10):7563-71 - PubMed
  11. Angew Chem Int Ed Engl. 2012 Nov 19;51(47):11770-3 - PubMed
  12. Nanoscale. 2013 Aug 21;5(16):7388-96 - PubMed
  13. Science. 2014 Feb 28;343(6174):990-4 - PubMed
  14. Nature. 2012 Jun 06;486(7401):43-51 - PubMed
  15. Sci Rep. 2015 Aug 06;5:12903 - PubMed
  16. Sci Rep. 2016 Mar 03;6:22699 - PubMed
  17. Nanoscale. 2015 Apr 28;7(16):7056-64 - PubMed
  18. Angew Chem Int Ed Engl. 2010 Mar 29;49(14):2565-9 - PubMed
  19. Sci Rep. 2016 Apr 14;6:24330 - PubMed
  20. Science. 2011 Apr 22;332(6028):443-7 - PubMed
  21. J Am Chem Soc. 2015 Oct 14;137(40):13161-6 - PubMed
  22. Small. 2011 Sep 5;7(17):2454-9 - PubMed
  23. Chemistry. 2015 Jul 6;21(28):10100-8 - PubMed
  24. Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11496-500 - PubMed
  25. ACS Appl Mater Interfaces. 2013 Feb;5(3):981-8 - PubMed
  26. Adv Mater. 2010 Jan 19;22(3):347-51 - PubMed
  27. Angew Chem Int Ed Engl. 2011 Jul 4;50(28):6278-82 - PubMed
  28. Chemistry. 2013 Oct 11;19(42):14271-8 - PubMed
  29. Chem Commun (Camb). 2015 Oct 18;51(81):15015-8 - PubMed
  30. Science. 2009 Feb 6;323(5915):760-4 - PubMed
  31. Chem Commun (Camb). 2012 May 11;48(37):4465-7 - PubMed
  32. ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21334-46 - PubMed
  33. ACS Appl Mater Interfaces. 2016 Jan 21;:null - PubMed
  34. Chem Rev. 2004 Oct;104(10):4245-69 - PubMed
  35. Chemistry. 2013 May 3;19(19):5892-8 - PubMed
  36. J Am Chem Soc. 2012 Feb 22;134(7):3517-23 - PubMed
  37. Adv Mater. 2014 Apr 16;26(15):2408-12 - PubMed

Publication Types