Display options
Share it on

Metabolomics. 2017;13(10):108. doi: 10.1007/s11306-017-1247-2. Epub 2017 Aug 18.

Identification of weak and gender specific effects in a short 3 weeks intervention study using barley and oat mixed linkage β-glucan dietary supplements: a human fecal metabolome study by GC-MS.

Metabolomics : Official journal of the Metabolomic Society

Alessia Trimigno, Bekzod Khakimov, Josue Leonardo Castro Mejia, Mette Skau Mikkelsen, Mette Kristensen, Birthe Møller Jespersen, Søren Balling Engelsen

Affiliations

  1. Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
  2. Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena (FC), Italy.
  3. Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.

PMID: 28867988 PMCID: PMC5562775 DOI: 10.1007/s11306-017-1247-2

Abstract

INTRODUCTION: Mixed-linkage (1→3),(1→4)-β-d-glucans (BG) reduce cholesterol level and insulin response in humans. Despite this, their role in human metabolism and a mode of action remains largely unknown.

OBJECTIVES: To investigate the effects of three structurally different BG on human fecal metabolome in a full cross-over intervention using GC-MS metabolomics.

METHODS: Over three weeks of intervention, young healthy adults received food supplemented with BG from oat, two different BG from barley or a non-fiber control in a full cross-over design. Untargeted metabolomics and short chain fatty acid analysis was performed on day three fecal samples. ANOVA-simultaneous component analysis was applied to partition the data variation according to the study design, and PLS-DA was used to select most discriminative metabolite markers.

RESULTS: Univariate and multivariate data analysis revealed a dominating effect of inter-individual variances followed by a gender effect. Weak effects of BG intake were identified including an increased level of gamma-amino-butyrate and palmitoleic acid in males and a decreased level of enterolactone in females. Barley and oat derived BG were found to influence the human fecal metabolome differently. Barley BG increased the relative level of formate in males and isobutyrate, isovalerate, 2-methylbutyrate in females. In total 15, 3 and 11 human fecal metabolites were significantly different between control vs. BG, control vs. oat BG, and barley BG vs. oat BG, respectively.

CONCLUSIONS: The study show that human fecal metabolome largely reflects individual (∼28% variation) and gender (∼15% variation) differences, whereas the treatment effect of the BG (∼8% variation) only manifests in a few key metabolites (primarily by the metabolites: d-2-aminobutyric acid, palmitoleic acid, linoleic acid and 11-eicosenoic acid).

Keywords: ASCA; Chemometrics; Fecal metabolome (GC-MS); Mixed linkage β-glucan; Short chain fatty acids

References

  1. Clin Endocrinol (Oxf). 2004 Mar;60(3):382-8 - PubMed
  2. J Nutr. 2004 Jun;134(6):1384-8 - PubMed
  3. Metabolomics. 2007 Sep;3(3):211-221 - PubMed
  4. Int J Endocrinol. 2014;2014:730472 - PubMed
  5. Nutr J. 2007 Mar 26;6:6 - PubMed
  6. BMC Microbiol. 2014 Dec 14;14:311 - PubMed
  7. Diabetes Metab. 2009 Apr;35(2):115-20 - PubMed
  8. FEMS Microbiol Ecol. 2008 Jun;64(3):482-93 - PubMed
  9. Nutrients. 2016 Dec 17;8(12): - PubMed
  10. J Nutr. 2009 Mar;139(3):461-6 - PubMed
  11. J Fam Pract. 2002 Apr;51(4):369 - PubMed
  12. Ann Nutr Metab. 1999;43(5):301-9 - PubMed
  13. J Nutr. 2002 Mar;132(3):394-8 - PubMed
  14. Am J Clin Nutr. 2003 Oct;78(4):711-8 - PubMed
  15. Br J Nutr. 2010 Apr;103(8):1212-22 - PubMed
  16. Eur J Clin Nutr. 2007 Jun;61(6):779-85 - PubMed
  17. Anal Chem. 2015 Jan 20;87(2):829-36 - PubMed
  18. Proc Nutr Soc. 2015 Feb;74(1):23-36 - PubMed
  19. Eur J Clin Nutr. 2008 Aug;62(8):978-84 - PubMed
  20. Eur J Clin Nutr. 2002 Jul;56(7):622-8 - PubMed
  21. Nutr Metab (Lond). 2012 Feb 03;9:8 - PubMed
  22. J Nutr. 2002 Sep;132(9):2494-505 - PubMed
  23. Nutr Res. 2009 Oct;29(10):705-9 - PubMed
  24. Physiol Rev. 2001 Jul;81(3):1031-64 - PubMed
  25. Appetite. 2009 Dec;53(3):338-44 - PubMed
  26. Vasc Health Risk Manag. 2008;4(6):1265-72 - PubMed
  27. Appl Environ Microbiol. 2015 Nov;81(22):7945-56 - PubMed
  28. Anal Bioanal Chem. 2013 Nov;405(28):9193-205 - PubMed
  29. PLoS One. 2014 Apr 03;9(4):e93631 - PubMed
  30. Eur J Clin Nutr. 2005 Nov;59(11):1272-81 - PubMed
  31. J Nutr. 2013 Oct;143(10):1579-85 - PubMed
  32. J Nutr Biochem. 2015 Dec;26(12):1509-19 - PubMed
  33. Food Chem. 2013 Jan 1;136(1):130-8 - PubMed
  34. Clin Endocrinol (Oxf). 2007 Apr;66(4):530-7 - PubMed
  35. Nutr Rev. 2012 Aug;70(8):444-58 - PubMed
  36. Food Nutr Res. 2010 Apr 14;54: - PubMed
  37. Bioinformatics. 2005 Jul 1;21(13):3043-8 - PubMed
  38. Br J Nutr. 2000 Apr;83(4):381-7 - PubMed
  39. Mol Nutr Food Res. 2009 Oct;53(10):1343-51 - PubMed
  40. Nature. 2000 Oct 19;407(6806):908-13 - PubMed
  41. J Proteome Res. 2016 Jun 3;15(6):1939-54 - PubMed
  42. Metabolomics. 2012 Jun;8(Suppl 1):3-16 - PubMed
  43. Eur J Clin Nutr. 2001 May;55(5):327-33 - PubMed
  44. Nutr Metab Cardiovasc Dis. 2013 Feb;23(2):136-43 - PubMed
  45. Am J Clin Nutr. 1999 Jan;69(1):55-63 - PubMed
  46. Food Chem Toxicol. 2003 Apr;41(4):477-87 - PubMed

Publication Types