Display options
Share it on

ACS Med Chem Lett. 2017 Jul 05;8(8):864-868. doi: 10.1021/acsmedchemlett.7b00212. eCollection 2017 Aug 10.

Evaluation of Oxetan-3-ol, Thietan-3-ol, and Derivatives Thereof as Bioisosteres of the Carboxylic Acid Functional Group.

ACS medicinal chemistry letters

Pierrik Lassalas, Killian Oukoloff, Vishruti Makani, Michael James, Van Tran, Yuemang Yao, Longchuan Huang, Krishna Vijayendran, Ludovica Monti, John Q Trojanowski, Virginia M-Y Lee, Marisa C Kozlowski, Amos B Smith, Kurt R Brunden, Carlo Ballatore

Affiliations

  1. Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
  2. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.
  3. Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

PMID: 28835803 PMCID: PMC5554911 DOI: 10.1021/acsmedchemlett.7b00212

Abstract

The oxetane ring serves as an isostere of the carbonyl moiety, suggesting that oxetan-3-ol may be considered as a potential surrogate of the carboxylic acid functional group. To investigate this structural unit, as well as thietan-3-ol and the corresponding sulfoxide and sulfone derivatives, as potential carboxylic acid bioisosteres, a set of model compounds has been designed, synthesized, and evaluated for physicochemical properties. Similar derivatives of the cyclooxygenase inhibitor, ibuprofen, were also synthesized and evaluated for inhibition of eicosanoid biosynthesis in vitro. Collectively, the data suggest that oxetan-3-ol, thietan-3-ol, and related structures hold promise as isosteric replacements of the carboxylic acid moiety.

Keywords: Oxetan-3-ol; carboxylic acid bioisostere; cyclooxygenase; dual inhibitors; lipoxygenase; thietan-3-ol

References

  1. Arch Pharm (Weinheim). 1983 Sep;316(9):752-5 - PubMed
  2. Chem Rev. 2016 Oct 12;116(19):12150-12233 - PubMed
  3. J Med Chem. 2012 Oct 25;55(20):8958-62 - PubMed
  4. Angew Chem Int Ed Engl. 2010 Nov 22;49(48):9052-67 - PubMed
  5. J Med Chem. 2016 Apr 14;59(7):3183-203 - PubMed
  6. ACS Med Chem Lett. 2014 Jul 24;5(9):1015-20 - PubMed
  7. Angew Chem Int Ed Engl. 2006 Nov 27;45(46):7736-9 - PubMed
  8. ACS Med Chem Lett. 2012 May 30;3(7):574-8 - PubMed
  9. Org Lett. 2014 Aug 15;16(16):4070-3 - PubMed
  10. Org Lett. 2017 Jun 16;19(12 ):3303-3306 - PubMed
  11. J Am Chem Soc. 2012 Sep 26;134(38):15621-3 - PubMed
  12. Chemistry. 2016 Nov 2;22(45):16271-16276 - PubMed
  13. ACS Med Chem Lett. 2014 Jun 27;5(8):900-4 - PubMed
  14. Bioorg Med Chem Lett. 2014 Sep 1;24(17):4171-5 - PubMed
  15. Bioorg Med Chem. 2002 Nov;10(11):3379-93 - PubMed
  16. Chem Commun (Camb). 2014 Aug 14;50(63):8797-800 - PubMed
  17. Inflamm Res. 2002 Mar;51(3):135-43 - PubMed
  18. ChemMedChem. 2013 Mar;8(3):385-95 - PubMed
  19. J Med Chem. 2010 Apr 22;53(8):3227-46 - PubMed
  20. Org Biomol Chem. 2016 Oct 4;14 (39):9343-9347 - PubMed
  21. ACS Chem Neurosci. 2012 Nov 21;3(11):928-40 - PubMed
  22. J Med Chem. 2011 Apr 28;54(8):2529-91 - PubMed
  23. ChemMedChem. 2015 Mar;10(3):455-60 - PubMed
  24. J Med Chem. 2011 Oct 13;54(19):6969-83 - PubMed
  25. Org Lett. 2017 May 19;19(10 ):2510-2513 - PubMed

Publication Types

Grant support