Display options
Share it on

Nat Commun. 2017 Sep 04;8(1):415. doi: 10.1038/s41467-017-00115-4.

Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures.

Nature communications

B Graczykowski, A El Sachat, J S Reparaz, M Sledzinska, M R Wagner, E Chavez-Angel, Y Wu, S Volz, Y Wu, F Alzina, C M Sotomayor Torres

Affiliations

  1. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain. [email protected].
  2. NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL-61614, Poznan, Poland. [email protected].
  3. Max Planck Institute for Polymer Research, Ackermannweg 10, 55218, Mainz, Germany. [email protected].
  4. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  5. Department of Physics, Universitat Autonoma de Barcelona, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  6. Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitari de Bellaterra, E-08193, Bellaterra, Spain.
  7. Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
  8. Laboratoire dEnergetique Moleculaire et Macroscopique, Combustion, CNRS, CentraleSupelec, Grande Voie des Vignes, 92295, Chatenay-Malabry, France.
  9. Laboratory for Integrated Micro-Mechatronics Systems, CNRS UMI2820, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
  10. ICREA Pg. Lluís Companys 23, 08010, Barcelona, Spain.

PMID: 28871197 PMCID: PMC5583326 DOI: 10.1038/s41467-017-00115-4

Abstract

Heat conduction in silicon can be effectively engineered by means of sub-micrometre porous thin free-standing membranes. Tunable thermal properties make these structures good candidates for integrated heat management units such as waste heat recovery, rectification or efficient heat dissipation. However, possible applications require detailed thermal characterisation at high temperatures which, up to now, has been an experimental challenge. In this work we use the contactless two-laser Raman thermometry to study heat dissipation in periodic porous membranes at high temperatures via lattice conduction and air-mediated losses. We find the reduction of the thermal conductivity and its temperature dependence closely correlated with the structure feature size. On the basis of two-phonon Raman spectra, we attribute this behaviour to diffuse (incoherent) phonon-boundary scattering. Furthermore, we investigate and quantify the heat dissipation via natural air-mediated cooling, which can be tuned by engineering the porosity.Nanostructuring of silicon allows acoustic phonon engineering, but the mechanism of related thermal transport in these structures is not fully understood. Here, the authors study the heat dissipation in silicon membranes with periodic nanoholes and show the importance of incoherent scattering.

References

  1. Nat Commun. 2015 Jun 24;6:7228 - PubMed
  2. ACS Nano. 2011 Jan 25;5(1):321-8 - PubMed
  3. Phys Rev B Condens Matter. 1993 Sep 1;48(9):6024-6032 - PubMed
  4. Nat Mater. 2015 Jul;14(7):667-74 - PubMed
  5. Nat Commun. 2013;4:1640 - PubMed
  6. Phys Rev Lett. 2004 Oct 29;93(18):184301 - PubMed
  7. Rev Sci Instrum. 2014 Mar;85(3):034901 - PubMed
  8. Nano Lett. 2011 Jan 12;11(1):107-12 - PubMed
  9. ACS Nano. 2016 Jan 26;10(1):124-32 - PubMed
  10. Nat Nanotechnol. 2010 Oct;5(10):718-21 - PubMed
  11. Nat Commun. 2014 Mar 19;5:3435 - PubMed
  12. Sci Rep. 2014 Sep 17;4:6399 - PubMed
  13. ACS Nano. 2015 Apr 28;9(4):3820-8 - PubMed
  14. ACS Nano. 2011 Dec 27;5(12):10102-7 - PubMed
  15. Nature. 2013 Nov 14;503(7475):209-17 - PubMed
  16. Nanoscale. 2016 Jul 21;8(27):13155-67 - PubMed
  17. Phys Rev Lett. 2015 Mar 20;114(11):115901 - PubMed
  18. Nano Lett. 2010 Oct 13;10(10):4279-83 - PubMed

Publication Types