Display options
Share it on

Sci Rep. 2017 Sep 05;7(1):10442. doi: 10.1038/s41598-017-10905-x.

Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

Scientific reports

Maarten W Tuijtel, Aat A Mulder, Clara C Posthuma, Barbara van der Hoeven, Abraham J Koster, Montserrat Bárcena, Frank G A Faas, Thomas H Sharp

Affiliations

  1. Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
  2. Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
  3. NeCEN, Gorlaeus Laboratories, Leiden University, 2333 CC, Leiden, The Netherlands.
  4. Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands. [email protected].
  5. Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands. [email protected].

PMID: 28874723 PMCID: PMC5585351 DOI: 10.1038/s41598-017-10905-x

Abstract

Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

References

  1. Nano Lett. 2014 Jul 9;14(7):4171-5 - PubMed
  2. Nat Methods. 2015 Mar;12(3):215-8, 4 p following 218 - PubMed
  3. J Cell Biol. 2012 Aug 6;198(3):457-69 - PubMed
  4. J Microsc. 2009 Jul;235(1):1-8 - PubMed
  5. Ultramicroscopy. 2014 Aug;143:41-51 - PubMed
  6. Eur J Cell Biol. 2009 Nov;88(11):669-84 - PubMed
  7. J Struct Biol. 2014 May;186(2):205-13 - PubMed
  8. FEBS Lett. 2016 Jul;590(13):1877-95 - PubMed
  9. Nat Protoc. 2017 May;12(5):916-946 - PubMed
  10. J Gen Virol. 2007 Apr;88(Pt 4):1196-205 - PubMed
  11. IEEE Trans Med Imaging. 2010 Jan;29(1):196-205 - PubMed
  12. Microsc Res Tech. 2004 Jan 1;63(1):18-22 - PubMed
  13. J Virol. 2012 Mar;86(5):2474-87 - PubMed
  14. Methods Cell Biol. 2010;96:619-48 - PubMed
  15. Nat Methods. 2015 Jun;12(6):503-13 - PubMed
  16. Traffic. 2011 Jul;12(7):806-14 - PubMed
  17. J Struct Biol. 2017 Feb;197(2):83-93 - PubMed
  18. Cell. 2012 Aug 3;150(3):508-20 - PubMed
  19. J Cell Biol. 2011 Jan 10;192(1):111-9 - PubMed
  20. mBio. 2011 Oct 04;2(5): - PubMed
  21. Traffic. 2009 Feb;10(2):131-6 - PubMed
  22. J Chem Biol. 2015 Aug 25;8(4):129-42 - PubMed
  23. Chem Sci. 2015 Sep 1;6(9):5133-5138 - PubMed
  24. Science. 2007 Sep 21;317(5845):1749-53 - PubMed
  25. J Vis Exp. 2011 Jun 05;(52): - PubMed
  26. Methods Cell Biol. 2014;124:71-92 - PubMed
  27. Histochemistry. 1986;85(5):439-40 - PubMed
  28. Neurophotonics. 2016 Oct;3(4):041802 - PubMed
  29. Nat Methods. 2014 Jul;11(7):737-9 - PubMed
  30. Adv Colloid Interface Sci. 2001 Jan 29;89-90:485-96 - PubMed
  31. Opt Express. 2015 Feb 9;23(3):3770-83 - PubMed
  32. Sci Rep. 2017 Mar 20;7:44666 - PubMed
  33. Virus Res. 2016 Jul 15;220:70-90 - PubMed
  34. Nat Methods. 2011 Jan;8(1):80-4 - PubMed
  35. PLoS One. 2015 Apr 15;10(4):e0124581 - PubMed
  36. J Virol. 2008 May;82(9):4480-91 - PubMed
  37. J Struct Biol. 2007 Nov;160(2):135-45 - PubMed
  38. J Microsc. 2003 Oct;212(Pt 1):81-90 - PubMed
  39. Anal Biochem. 2001 Apr 15;291(2):175-97 - PubMed
  40. Nat Methods. 2017 Jan 31;14(2):102-103 - PubMed
  41. Scanning Microsc Suppl. 1989;3:253-68; discussion 268-9 - PubMed
  42. Sci Rep. 2015 Mar 31;5:9583 - PubMed
  43. Methods Cell Biol. 2014;124:xvii-xviii - PubMed
  44. Sci Rep. 2015 Dec 09;5:18006 - PubMed
  45. Scanning. 2007 Jul-Aug;29(4):152-61 - PubMed
  46. Ultramicroscopy. 2014 Aug;143:3-14 - PubMed
  47. Biophys J. 2016 Feb 23;110(4):860-9 - PubMed
  48. Curr Opin Chem Biol. 2014 Jun;20:86-91 - PubMed
  49. Science. 2006 Sep 15;313(5793):1642-5 - PubMed
  50. J Neurosci Methods. 1998 Sep 1;83(2):97-102 - PubMed
  51. J Struct Biol. 1996 Jan-Feb;116(1):71-6 - PubMed
  52. J Microsc. 2007 Aug;227(Pt 2):98-109 - PubMed
  53. Protoplasma. 2010 Aug;244(1-4):91-7 - PubMed
  54. Semin Cell Dev Biol. 2009 Oct;20(8):910-9 - PubMed
  55. Sci Rep. 2015 Oct 14;5:13017 - PubMed
  56. Nat Methods. 2005 Oct;2(10):743-9 - PubMed
  57. J Cell Sci. 2014 Jan 1;127(Pt 1):124-36 - PubMed

Publication Types