Display options
Share it on

Cartilage. 2017 Oct;8(4):391-399. doi: 10.1177/1947603516665443. Epub 2016 Sep 01.

Contrast-Enhanced Computed Tomography Enables Quantitative Evaluation of Tissue Properties at Intrajoint Regions in Cadaveric Knee Cartilage.

Cartilage

Rachel C Stewart, Juuso T J Honkanen, Harri T Kokkonen, Virpi Tiitu, Simo Saarakkala, Antti Joukainen, Brian D Snyder, Jukka S Jurvelin, Mark W Grinstaff, Juha Töyräs

Affiliations

  1. 1 Department of Biomedical Engineering, Boston University, Boston, MA, USA.
  2. 2 Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
  3. 3 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
  4. 4 Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
  5. 5 Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland.
  6. 6 Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
  7. 7 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
  8. 8 Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
  9. 9 Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland.
  10. 10 Department of Chemistry, Boston University, Boston, MA, USA.

PMID: 28934883 PMCID: PMC5613888 DOI: 10.1177/1947603516665443

Abstract

Objective The aim of this study was to investigate whether the concentration of the anionic contrast agent ioxaglate, as quantitated by contrast-enhanced computed tomography (CECT) using a clinical cone-beam CT (CBCT) instrument, reflects biochemical, histological, and biomechanical characteristics of articular cartilage imaged in an ex vivo, intact human knee joint. Design An osteoarthritic human cadaveric knee joint (91 years old) was injected with ioxaglate (36 mg I/mL) and imaged using CBCT over 61 hours of ioxaglate diffusion into cartilage. Following imaging, the joint surfaces were excised, rinsed to remove contrast agent, and compressive stiffness (equilibrium and instantaneous compressive moduli) was measured via indentation testing ( n = 17 sites). Each site was sectioned for histology and assessed for glycosaminoglycan content using digital densitometry of Safranin-O stained sections, Fourier transform infrared spectroscopy for collagen content, and morphology using both the Mankin and OARSI semiquantitative scoring systems. Water content was determined using mass change after lyophilization. Results CECT attenuation at all imaging time points, including those <1 hour of ioxaglate exposure, correlated significantly ( P < 0.05) with cartilage water and glycosaminoglycan contents, Mankin score, and both equilibrium and instantaneous compressive moduli. Early time points (<30 minutes) also correlated ( P < 0.05) with collagen content and OARSI score. Differences in cartilage quality between intrajoint regions were distinguishable at diffusion equilibrium and after brief ioxaglate exposure. Conclusions CECT with ioxaglate affords biochemical and biomechanical measurements of cartilage health and performance even after short, clinically relevant exposure times, and may be useful in the clinic as a means for detecting early signs of cartilage pathology.

Keywords: cartilage imaging; cone beam computed tomography; contrast enhanced computed tomography; osteoarthritis

References

  1. J Am Chem Soc. 2009 Sep 23;131(37):13234-5 - PubMed
  2. Osteoarthritis Cartilage. 2012 Jul;20(7):678-85 - PubMed
  3. Curr Opin Rheumatol. 2015 May;27(3):295-303 - PubMed
  4. Osteoarthritis Cartilage. 2006 Jan;14(1):13-29 - PubMed
  5. Magn Reson Med. 2002 Oct;48(4):640-8 - PubMed
  6. Phys Med Biol. 2009 Nov 21;54(22):6823-36 - PubMed
  7. Osteoarthritis Cartilage. 2011 Oct;19(10 ):1183-9 - PubMed
  8. J Biomech. 2002 Jul;35(7):903-9 - PubMed
  9. Osteoarthritis Cartilage. 2008 Sep;16(9):1011-7 - PubMed
  10. Dentomaxillofac Radiol. 2009 Sep;38(6):367-78 - PubMed
  11. Invest Radiol. 2000 Oct;35(10):573-80 - PubMed
  12. Osteoarthritis Cartilage. 2013 Jan;21(1):60-8 - PubMed
  13. Ann Rheum Dis. 1998 Apr;57(4):237-45 - PubMed
  14. Osteoarthritis Cartilage. 2011 Mar;19(3):295-301 - PubMed
  15. Biomaterials. 1992;13(2):67-97 - PubMed
  16. J Orthop Res. 2014 Mar;32(3):403-12 - PubMed
  17. J Bone Joint Surg Br. 1976 Feb;58(1):94-101 - PubMed
  18. Osteoarthritis Cartilage. 2011 Aug;19(8):970-6 - PubMed
  19. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19255-60 - PubMed
  20. J Bone Joint Surg Am. 1971 Apr;53(3):523-37 - PubMed
  21. J Bone Joint Surg Am. 1972 Jul;54(5):954-72 - PubMed
  22. Chem Rev. 2013 Mar 13;113(3):1641-66 - PubMed
  23. Acta Radiol. 2009 Jan;50(1):78-85 - PubMed
  24. Radiology. 1997 Nov;205(2):551-8 - PubMed
  25. Osteoarthritis Cartilage. 2010 Feb;18(2):184-91 - PubMed
  26. Osteoarthritis Cartilage. 2010 Jan;18(1):65-72 - PubMed
  27. J Foot Ankle Res. 2015 Mar 12;8:8 - PubMed
  28. Radiol Clin North Am. 2009 Jul;47(4):675-86 - PubMed
  29. Radiology. 2013 Jan;266(1):141-50 - PubMed
  30. Phys Med Biol. 2007 Feb 21;52(4):1209-19 - PubMed
  31. J Biomech. 1972 Sep;5(5):541-51 - PubMed
  32. Cartilage. 2012 Oct;3(4):334-41 - PubMed
  33. Arch Biochem Biophys. 2005 Oct 1;442(1):1-10 - PubMed
  34. Cartilage. 2012 Jul;3(3):235-44 - PubMed

Publication Types

Grant support