Display options
Share it on

Nat Commun. 2017 Sep 21;8(1):650. doi: 10.1038/s41467-017-00651-z.

Non-diffracting multi-electron vortex beams balancing their electron-electron interactions.

Nature communications

Maor Mutzafi, Ido Kaminer, Gal Harari, Mordechai Segev

Affiliations

  1. Physics Department and Solid State Institute, Technion, Haifa, 32000, Israel.
  2. Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
  3. Physics Department and Solid State Institute, Technion, Haifa, 32000, Israel. [email protected].

PMID: 28935885 PMCID: PMC5608825 DOI: 10.1038/s41467-017-00651-z

Abstract

The wave-like nature of electrons has been known for almost a century, but only in recent years has the ability to shape the wavefunction of EBeams (Electron-Beams) become experimentally accessible. Various EBeam wavefunctions have been demonstrated, such as vortex, self-accelerating, Bessel EBeams etc. However, none has attempted to manipulate multi-electron beams, because the repulsion between electrons rapidly alters the beam shape. Here, we show how interference effects of the quantum wavefunction describing multiple electrons can be used to exactly balance both the repulsion and diffraction-broadening. We propose non-diffracting wavepackets of multiple electrons, which can also carry orbital angular momentum. Such wavefunction shaping facilitates the use of multi-electron beams in electron microscopy with higher current without compromising on spatial resolution. Simulating the quantum evolution in three-dimensions and time, we show that imprinting such wavefunctions on electron pulses leads to shape-preserving multi-electrons ultrashort pulses. Our scheme applies to any beams of charged particles, such as protons and ion beams.Vortex electron beams are generated using single electrons but their low beam-density is a limitation in electron microscopy. Here the authors propose a scheme for the realization of non-diffracting electron beams by shaping wavepackets of multiple electrons and including electron-electron interactions.

References

  1. Phys Rev Lett. 2005 Nov 18;95(21):213904 - PubMed
  2. Ultramicroscopy. 2017 May;176:63-73 - PubMed
  3. Phys Rev Lett. 2016 Nov 18;117(21):217601 - PubMed
  4. Phys Rev Lett. 2013 Jul 26;111(4):046101 - PubMed
  5. Phys Rev Lett. 2001 Jan 15;86(3):436-9 - PubMed
  6. Nature. 2013 Feb 21;494(7437):331-5 - PubMed
  7. Phys Rev Lett. 2011 Oct 21;107(17):174802 - PubMed
  8. Nature. 2001 May 3;411(6833):43 - PubMed
  9. Ultramicroscopy. 2014 Sep;144:26-31 - PubMed
  10. Nature. 2015 May 14;521(7551):200-3 - PubMed
  11. Nat Commun. 2015 Nov 26;6:8926 - PubMed
  12. Anal Bioanal Chem. 2002 Oct;374(4):703-8 - PubMed
  13. Nano Lett. 2010 Feb 10;10(2):592-6 - PubMed
  14. Phys Rev Lett. 1996 May 20;76(21):3975-3978 - PubMed
  15. Phys Rev Lett. 2014 Apr 4;112(13):134801 - PubMed
  16. Nature. 2002 Jul 25;418(6896):392-4 - PubMed
  17. Nature. 2010 Apr 1;464(7289):737-9 - PubMed
  18. Phys Rev Lett. 2006 Feb 3;96(4):043901 - PubMed
  19. Phys Rev Lett. 2009 Mar 6;102(9):096101 - PubMed
  20. Phys Rev Lett. 2007 Nov 9;99(19):190404 - PubMed
  21. Phys Rev Lett. 2016 Aug 12;117(7):076101 - PubMed
  22. Nature. 2010 Sep 16;467(7313):301-4 - PubMed
  23. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7069-73 - PubMed
  24. ACS Nano. 2014 Nov 25;8(11):11474-82 - PubMed
  25. Science. 2010 Apr 9;328(5975):187-93 - PubMed
  26. Science. 2011 Jan 14;331(6014):192-5 - PubMed
  27. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16105-10 - PubMed
  28. Nature. 2009 Dec 17;462(7275):902-6 - PubMed
  29. Nanotechnology. 2014 Nov 21;25(46):465304 - PubMed

Publication Types

Grant support