Display options
Share it on

Process Biochem. 2017 Aug;59:312-320. doi: 10.1016/j.procbio.2017.02.003. Epub 2017 Feb 06.

Adipogenic Differentiation of Human Adipose-Derived Stem Cells Grown as Spheroids.

Process biochemistry (Barking, London, England)

Paul A Turner, Bhuvaneswari Gurumurthy, Jennifer L Bailey, Carrie M Elks, Amol V Janorkar

Affiliations

  1. Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS.
  2. Matrix Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA.

PMID: 28966553 PMCID: PMC5617119 DOI: 10.1016/j.procbio.2017.02.003

Abstract

Understanding the process of adipogenesis is critical if suitable therapeutics for obesity and related metabolic diseases are to be found. The current study presents proof of feasibility of creating a 3-D spheroid model using human adipose-derived stem cells (hASCs) and their subsequent adipogenic differentiation. hASC spheroids were formed atop an elastin-like polypeptide-polyethyleneimine (ELP-PEI) surface and differentiated using an adipogenic cocktail. Spheroids were matured in the presence of dietary fatty acids (linoleic or oleic acid) and evaluated based on functional markers including intracellular protein, CD36 expression, triglyceride accumulation, and PPAR-γ gene expression. Spheroid size was found to increase as the hASCs matured in the adipocyte maintenance medium, though the fatty acid treatment generally resulted in smaller spheroids compared to control. A stable protein content over the 10-day maturation period indicated contact-inhibited proliferation as well as minimal loss of spheroids during culture. Spheroids treated with fatty acids showed greater amounts of intracellular triglyceride content and greater expression of the key adipogenic gene, PPAR-γ. We also demonstrated that 3-D spheroids outperformed 2-D monolayer cultures in adipogenesis. We then compared the adipogenesis of hASC spheroids to that in 3T3-L1 spheroids and found that the triglyceride accumulation was less profound in hASC spheroids than that in 3T3-L1 adipocytes, correlated with smaller average spheroids, suggesting a relatively slower differentiation process. Taken together, we have shown the feasibility of adipogenic differentiation of patient-derived hASC spheroids, which with further development, may help elucidate key features in the adipogenesis process.

Keywords: 3-D cell culture; adipose tissue model; cell morphology; elastin-like polypeptide; spheroids; stem cells

References

  1. Expert Rev Med Devices. 2009 Sep;6(5):533-51 - PubMed
  2. Tissue Eng Part C Methods. 2013 May;19(5):336-44 - PubMed
  3. Diabetes Metab. 2004 Sep;30(4):294-309 - PubMed
  4. Tissue Eng. 2005 Nov-Dec;11(11-12):1840-51 - PubMed
  5. Plast Reconstr Surg. 2008 Apr;121(4):1153-64 - PubMed
  6. Biomaterials. 2011 Apr;32(11):2734-47 - PubMed
  7. Obesity (Silver Spring). 2008 May;16(5):938-44 - PubMed
  8. J Biomed Mater Res A. 2014 Mar;102(3):852-61 - PubMed
  9. Biomaterials. 2012 Feb;33(6):1748-58 - PubMed
  10. Biomaterials. 2007 Jun;28(18):2850-60 - PubMed
  11. Acta Biomater. 2013 Jun;9(6):6876-84 - PubMed
  12. Organogenesis. 2008 Oct;4(4):228-35 - PubMed
  13. Anal Biochem. 2000 Aug 15;284(1):65-9 - PubMed
  14. Methods Mol Biol. 2001;155:239-47 - PubMed
  15. Biomaterials. 2008 Feb;29(6):625-32 - PubMed
  16. Tissue Eng Part B Rev. 2010 Aug;16(4):413-26 - PubMed
  17. Am J Clin Nutr. 1979 Nov;32(11):2198-205 - PubMed
  18. Methods. 2008 Jun;45(2):115-20 - PubMed
  19. Eur J Pharmacol. 2005 Aug 22;518(2-3):90-5 - PubMed
  20. Acta Biomater. 2008 Jul;4(4):827-37 - PubMed
  21. Biomaterials. 2006 Dec;27(36):6052-63 - PubMed
  22. Cytotherapy. 2013 May;15(5):542-56 - PubMed
  23. Mol Biol Cell. 2005 Jan;16(1):24-31 - PubMed
  24. Pharm Res. 2008 Mar;25(3):683-91 - PubMed
  25. Tissue Eng. 2005 Mar-Apr;11(3-4):556-66 - PubMed
  26. Biotechnol Lett. 2003 Dec;25(23):1967-72 - PubMed
  27. Biotechnol Bioeng. 2014 Jan;111(1):174-83 - PubMed
  28. Biomaterials. 2003 Aug;24(18):3125-32 - PubMed
  29. Int J Artif Organs. 2003 Dec;26(12):1064-76 - PubMed
  30. Tissue Eng Part A. 2011 Feb;17(3-4):513-21 - PubMed
  31. Plast Reconstr Surg. 2010 Oct;126(4):1155-62 - PubMed
  32. Anat Rec. 2001 Aug 1;263(4):361-6 - PubMed
  33. Am J Clin Nutr. 2006 Jun;83(6 Suppl):1505S-1519S - PubMed
  34. J Biomed Mater Res A. 2017 Feb;105(2):377-388 - PubMed
  35. J Lipid Res. 1996 May;37(5):907-25 - PubMed
  36. Biomaterials. 2010 Jun;31(17):4715-24 - PubMed
  37. Tissue Eng. 2005 Mar-Apr;11(3-4):458-68 - PubMed
  38. J Clin Endocrinol Metab. 2014 Feb;99(2):E217-25 - PubMed
  39. Tissue Eng Part A. 2012 Oct;18(19-20):2138-47 - PubMed
  40. FEBS Lett. 2003 Feb 27;537(1-3):85-90 - PubMed
  41. J Biomed Mater Res A. 2006 Nov;79(2):359-69 - PubMed
  42. Nat Rev Drug Discov. 2008 Jun;7(6):489-503 - PubMed
  43. Biochim Biophys Acta. 2005 May 30;1740(2):266-86 - PubMed
  44. Biomaterials. 2007 Dec;28(35):5280-90 - PubMed

Publication Types

Grant support