Display options
Share it on

PeerJ. 2017 Sep 01;5:e3702. doi: 10.7717/peerj.3702. eCollection 2017.

A practical guide to build .

PeerJ

Santiago Montero-Mendieta, Manfred Grabherr, Henrik Lantz, Ignacio De la Riva, Jennifer A Leonard, Matthew T Webster, Carles Vilà

Affiliations

  1. Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain.
  2. Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (BILS), Uppsala Universitet, Uppsala, Sweden.
  3. Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
  4. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Universitet, Uppsala, Sweden.

PMID: 28879061 PMCID: PMC5582611 DOI: 10.7717/peerj.3702

Abstract

Whole genome sequencing (WGS) is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq) represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembled

Keywords: Clusters of Orthologous Groups; Frog transcriptome; Gene ontology; Genomics; Kyoto encyclopedia of genes and genomes; Protein domain identification; RNA-seq; Transcriptomics; Trinity

Conflict of interest statement

The authors declare there are no competing interests.

References

  1. Cell Rep. 2017 Jan 17;18(3):762-776 - PubMed
  2. Dev Biol. 2003 Jan 1;253(1):139-49 - PubMed
  3. J Anthropol Sci. 2010;88:93-112 - PubMed
  4. Nat Rev Genet. 2009 Jan;10(1):57-63 - PubMed
  5. Mol Cell. 2015 May 21;58(4):586-97 - PubMed
  6. Science. 2016 Apr 22;352(6284):470-4 - PubMed
  7. Immunol Lett. 2008 Mar 15;116(2):104-10 - PubMed
  8. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  9. Nature. 2015 Feb 19;518(7539):371-5 - PubMed
  10. Bioinformatics. 2012 Dec 15;28(24):3211-7 - PubMed
  11. Philos Trans R Soc Lond B Biol Sci. 2006 Mar 29;361(1467):403-12 - PubMed
  12. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1257-62 - PubMed
  13. Front Biosci (Landmark Ed). 2009 Jan 01;14:4457-63 - PubMed
  14. Nat Rev Genet. 2011 Sep 07;12(10):671-82 - PubMed
  15. Bioinformatics. 2015 Oct 1;31(19):3210-2 - PubMed
  16. PLoS One. 2016 May 27;11(5):e0156419 - PubMed
  17. Bioinformatics. 2014 May 1;30(9):1228-35 - PubMed
  18. Mol Cell Proteomics. 2009 Mar;8(3):571-83 - PubMed
  19. Pharmacol Ther. 2013 Apr;138(1):103-41 - PubMed
  20. Genome Biol. 2014 Dec 21;15(12):553 - PubMed
  21. Blood. 2000 May 15;95(10):3032-43 - PubMed
  22. Sci Rep. 2016 Apr 04;6:24069 - PubMed
  23. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  24. Nature. 2016 Oct 19;538(7625):336-343 - PubMed
  25. G3 (Bethesda). 2014 Nov 05;4(12):2419-24 - PubMed
  26. Nucleic Acids Res. 2007 Jan;35(Database issue):D332-8 - PubMed
  27. Nat Protoc. 2013 Aug;8(8):1494-512 - PubMed
  28. Nat Biotechnol. 2011 May 15;29(7):644-52 - PubMed
  29. Mol Ecol Resour. 2013 Jul;13(4):663-73 - PubMed
  30. PeerJ. 2014 Sep 04;2:e558 - PubMed
  31. Am J Prev Med. 2010 May;38(5):556-65 - PubMed
  32. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 - PubMed
  33. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  34. Genome Biol. 2016 Jan 26;17 :13 - PubMed
  35. Evol Bioinform Online. 2015 May 24;11:97-104 - PubMed
  36. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 - PubMed
  37. J Biol Chem. 1992 Sep 25;267(27):19494-502 - PubMed
  38. Mol Ecol Resour. 2011 Mar;11 Suppl 1:81-92 - PubMed
  39. Annu Rev Genomics Hum Genet. 2005;6:381-406 - PubMed
  40. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  41. BMC Genomics. 2013 Jul 01;14:434 - PubMed
  42. PLoS One. 2016 Feb 17;11(2):e0146851 - PubMed
  43. Nat Methods. 2008 Jan;5(1):16-8 - PubMed
  44. Nature. 2006 Jan 12;439(7073):161-7 - PubMed
  45. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19345-50 - PubMed
  46. Proc Natl Acad Sci U S A. 1975 Feb;72(2):548-52 - PubMed
  47. Genome Biol. 2009;10(3):R25 - PubMed
  48. Mol Ecol Resour. 2014 Jan;14(1):178-83 - PubMed
  49. Science. 2010 Apr 30;328(5978):633-6 - PubMed
  50. BMC Bioinformatics. 2011 Mar 31;12:90 - PubMed
  51. Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 - PubMed
  52. Comp Biochem Physiol B Biochem Mol Biol. 2004 Jun;138(2):129-36 - PubMed
  53. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 - PubMed
  54. BMC Evol Biol. 2008 Jun 18;8:176 - PubMed
  55. Mol Ecol. 2015 May;24(10):2310-23 - PubMed
  56. Nucleic Acids Res. 2012 Jan;40(Database issue):D284-9 - PubMed
  57. Nucleic Acids Res. 2017 Jan 4;45(D1):D446-D456 - PubMed
  58. Curr Opin Struct Biol. 2001 Feb;11(1):39-46 - PubMed
  59. Science. 1977 Jun 10;196(4295):1161-6 - PubMed
  60. Nat Genet. 2000 May;25(1):25-9 - PubMed
  61. Evol Appl. 2014 Nov;7(9):999-1007 - PubMed
  62. DNA Res. 2014 Feb;21(1):1-13 - PubMed
  63. Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 - PubMed
  64. PLoS One. 2015 Jun 25;10(6):e0130500 - PubMed
  65. Nature. 2001 Feb 15;409(6822):860-921 - PubMed
  66. Nat Rev Immunol. 2007 Mar;7(3):202-12 - PubMed
  67. Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 - PubMed

Publication Types