Display options
Share it on

Materials (Basel). 2011 Jan 11;4(1):183-205. doi: 10.3390/ma4010183.

Organic Zeolite Analogues Based on Multi-Component Liquid Crystals: Recognition and Transformation of Molecules within Constrained Environments.

Materials (Basel, Switzerland)

Yasuhiro Ishida

Affiliations

  1. RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. [email protected].
  2. PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. [email protected].
  3. Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. [email protected].

PMID: 28879985 PMCID: PMC5448478 DOI: 10.3390/ma4010183

Abstract

In liquid crystals (LCs), molecules are confined in peculiar environments, where ordered alignment and certain mobility are realized at the same time. Considering these characteristics, the idea of "controlling molecular events within LC media" seems reasonable. As a suitable system for investigating this challenge, we have recently developed a new class of ionic LCs; the salts of amphiphilic carboxylic acids with 2-amino alcohols, or those of carboxylic acids with amphiphilic 2-amino alcohols, have a strong tendency to exhibit thermotropic LC phases. Because of the noncovalent nature of the interaction between molecules, one of the two components can easily be exchanged with, or transformed into, another molecule, without distorting the original LC architecture. In addition, both components are common organic molecules, and a variety of compounds are easily available. Taking advantage of these characteristics, we have succeeded in applying two‑component LCs as chiral media for molecular recognition and reactions. This review presents an overview of our recent studies, together with notable reports related to this field.

Keywords: chiral recognition; cross-linking; host-guest chemistry; liquid crystals; supramolecular chemistry; template reactions

References

  1. Angew Chem Int Ed Engl. 1999 Oct 18;38(20):3021-3026 - PubMed
  2. Chemistry. 2000 Apr 14;6(8):1287-93 - PubMed
  3. Angew Chem Int Ed Engl. 2001 Jul 16;40(14):2669-2671 - PubMed
  4. Chem Rev. 2001 Jun;101(6):1629-58 - PubMed
  5. Chem Rev. 2000 Mar 8;100(3):1025-74 - PubMed
  6. Chem Rev. 2000 Jul 12;100(7):2495-504 - PubMed
  7. Chem Rev. 2000 May 10;100(5):1847-1874 - PubMed
  8. Chem Rev. 2002 Jan;102(1):1-27 - PubMed
  9. Chem Rev. 1997 Aug 5;97(5):1647-1668 - PubMed
  10. J Am Chem Soc. 2002 Nov 20;124(46):13749-56 - PubMed
  11. Acc Chem Res. 2003 Jan;36(1):39-47 - PubMed
  12. Chem Commun (Camb). 2003 Sep 21;(18):2338-9 - PubMed
  13. J Am Chem Soc. 2004 Feb 18;126(6):1616-7 - PubMed
  14. Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75 - PubMed
  15. Angew Chem Int Ed Engl. 2004 Aug 6;43(31):4002-11 - PubMed
  16. Angew Chem Int Ed Engl. 2005 Jul 25;44(30):4670-9 - PubMed
  17. J Am Chem Soc. 2006 Oct 11;128(40):13068-9 - PubMed
  18. Chemistry. 2007;13(18):5186-96 - PubMed
  19. Science. 1985 Feb 22;227(4689):849-56 - PubMed
  20. Science. 1983 Apr 22;220(4595):365-71 - PubMed
  21. Molecules. 2007 Sep 18;12(9):2181-9 - PubMed
  22. Chemistry. 2008;14(10):2984-93 - PubMed
  23. Org Lett. 2008 Aug 21;10(16):3473-6 - PubMed
  24. Angew Chem Int Ed Engl. 2008;47(43):8241-5 - PubMed
  25. Chem Commun (Camb). 2009 Apr 28;(16):2100-2 - PubMed
  26. J Am Chem Soc. 2010 Dec 15;132(49):17435-46 - PubMed
  27. Angew Chem Int Ed Engl. 1998 May 4;37(8):1020-1043 - PubMed
  28. J Am Chem Soc. 1977 May 11;99(10):3510-3 - PubMed

Publication Types