Display options
Share it on

Sensors (Basel). 2017 Sep 07;17(9). doi: 10.3390/s17092044.

Aptamer-Based Single-Step Assay by the Fluorescence Enhancement on Electroless Plated Nano Au Substrate.

Sensors (Basel, Switzerland)

Jegatha Nambi Krishnan, Sang-Hwi Park, Sang Kyung Kim

Affiliations

  1. Center for BioMicrosystems, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea. [email protected].
  2. School of Micro Nano System Engineering, Korea University of Science and Technology, Daejeon 305-333, Korea. [email protected].
  3. School of Chemical Engineering, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuari Nagar, Goa 403-726, India. [email protected].
  4. Center for BioMicrosystems, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea. [email protected].
  5. School of Micro Nano System Engineering, Korea University of Science and Technology, Daejeon 305-333, Korea. [email protected].
  6. Center for BioMicrosystems, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea. [email protected].
  7. School of Micro Nano System Engineering, Korea University of Science and Technology, Daejeon 305-333, Korea. [email protected].

PMID: 28880198 PMCID: PMC5620733 DOI: 10.3390/s17092044

Abstract

A new single-step aptamer-based surface-enhanced fluorescent optical sensor is built, by combining an aptamer-target interaction for target recognition and a fluorophore interaction for signal enhancement. The developed aptasensor is simple, sensitive, specific and stable for the detection of thrombin. A new nanometallic Au structure in the range of 100 nm was constructed through effective electroless plating method on a Cu thin film. Cu⁺ ions act as sacrificial seeds for the reduction of Au

Keywords: aptamer; electroless deposition; fluorescence; gold nanostructure; human serum albumin; optical biosensor; thrombin

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. ACS Nano. 2012 Sep 25;6(9):7607-14 - PubMed
  2. Nature. 1992 Feb 6;355(6360):564-6 - PubMed
  3. Anal Biochem. 2002 Feb 15;301(2):261-77 - PubMed
  4. J Am Chem Soc. 2006 Apr 26;128(16):5462-7 - PubMed
  5. Anal Bioanal Chem. 2008 Jul;391(5):1793-800 - PubMed
  6. J Am Chem Soc. 2003 Dec 3;125(48):14676-7 - PubMed
  7. Anal Chem. 2005 Sep 1;77(17):5735-41 - PubMed
  8. Science. 2000 Feb 4;287(5454):820-5 - PubMed
  9. Nat Biotechnol. 1996 Aug;14(8):1021-5 - PubMed
  10. Nucleic Acids Res. 1998 Sep 1;26(17):3915-24 - PubMed
  11. Chem Commun (Camb). 2013 Jun 18;49(48):5480-2 - PubMed
  12. Biosens Bioelectron. 2005 Dec 15;21(6):863-70 - PubMed
  13. Science. 2003 Sep 26;301(5641):1884-6 - PubMed
  14. Cancer Res. 2004 Nov 1;64(21):7668-72 - PubMed
  15. J Cell Physiol. 1997 Dec;173(3):406-14 - PubMed
  16. Nano Lett. 2008 Dec;8(12):4386-90 - PubMed
  17. Anal Chem. 2008 Apr 15;80(8):3020-4 - PubMed
  18. J Am Chem Soc. 2005 Mar 16;127(10):3270-1 - PubMed
  19. Nanomedicine. 2007 Dec;3(4):306-10 - PubMed
  20. J Clin Invest. 1976 Nov;58(5):1249-58 - PubMed
  21. Anal Biochem. 2001 Nov 1;298(1):1-24 - PubMed
  22. J Biol Chem. 2001 Dec 28;276(52):48644-54 - PubMed
  23. Electrophoresis. 2003 May;24(9):1375-82 - PubMed
  24. ACS Nano. 2012 Feb 28;6(2):1486-93 - PubMed
  25. Thromb Res. 1996 Nov 15;84(4):289-94 - PubMed
  26. Nature. 1990 Aug 30;346(6287):818-22 - PubMed

Publication Types