Display options
Share it on

Biol Open. 2017 Nov 15;6(11):1644-1653. doi: 10.1242/bio.027458.

Autophagy promotes degradation of internalized collagen and regulates distribution of focal adhesions to suppress cell adhesion.

Biology open

Shinichi Kawano, Takehiro Torisu, Motohiro Esaki, Kumiko Torisu, Yuichi Matsuno, Takanari Kitazono

Affiliations

  1. Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
  2. Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan [email protected].

PMID: 28970230 PMCID: PMC5703610 DOI: 10.1242/bio.027458

Abstract

Adhesion of cells to the extracellular matrix (ECM) via focal adhesions (FAs) is crucial for cell survival, migration, and differentiation. Although the regulation of FAs, including by integrins and the ECM, is important to cell behavior, how FAs are regulated is not well known. Autophagy is induced by both cell adhesion and cell detachment. Here, we showed that autophagosomes are located close to internalized collagen and paxillin, which is a well-known marker of FAs. Autophagy-deficient cells showed increased levels of internalized collagen compared with control cells. Moreover, paxillin exhibited a more peripheral distribution and the area of paxillin was increased, and adhesion-induced focal adhesion kinase signaling was impaired and adhesion was enhanced, in autophagy-deficient cells. These results suggest that autophagy suppressed cell adhesion by regulating internalized ECM and FAs.

© 2017. Published by The Company of Biologists Ltd.

Keywords: Atg5; Atg7; Extracellular matrix

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

References

  1. Nat Cell Biol. 2011 Dec 04;14 (1):51-60 - PubMed
  2. Cancer Res. 2013 Jul 15;73(14):4311-22 - PubMed
  3. J Cell Biol. 2005 May 9;169(3):425-34 - PubMed
  4. J Cell Sci. 2000 Oct;113 ( Pt 20):3673-8 - PubMed
  5. Nat Med. 2010 Nov;16(11):1313-20 - PubMed
  6. Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a018358 - PubMed
  7. Nat Cell Biol. 2000 Dec;2(12):E231-6 - PubMed
  8. Mol Biol Cell. 2007 Jul;18(7):2481-90 - PubMed
  9. Histochem J. 1996 Apr;28(4):229-45 - PubMed
  10. Mol Cell Biol. 2014 Feb;34(3):348-61 - PubMed
  11. Mol Cell Biol. 2011 Sep;31(17 ):3616-29 - PubMed
  12. J Cell Biol. 2016 Feb 29;212(5):577-90 - PubMed
  13. J Cell Physiol. 2012 Jan;227(1):127-35 - PubMed
  14. J Biol Chem. 2008 Sep 5;283(36):24848-59 - PubMed
  15. J Cell Physiol. 2007 Dec;213(3):565-73 - PubMed
  16. Oncogene. 2017 Mar 23;36(12 ):1619-1630 - PubMed
  17. Am J Physiol Lung Cell Mol Physiol. 2013 Jun 1;304(11):L709-21 - PubMed
  18. Nat Cell Biol. 2005 Jun;7(6):581-90 - PubMed
  19. J Cell Sci. 2009 Apr 15;122(Pt 8):1059-69 - PubMed
  20. Cell Cycle. 2013 Oct 15;12 (20):3317-28 - PubMed
  21. Cell Host Microbe. 2015 Nov 11;18(5):527-37 - PubMed
  22. Nature. 2004 Dec 23;432(7020):1032-6 - PubMed
  23. J Cell Sci. 2012 Aug 15;125(Pt 16):3695-701 - PubMed
  24. Trends Cell Biol. 2016 Jun;26(6):391-8 - PubMed
  25. J Cell Sci. 2008 Jun 1;121(11):1773-83 - PubMed
  26. Nat Rev Mol Cell Biol. 2005 Jan;6(1):56-68 - PubMed
  27. Mol Biol Cell. 2008 Mar;19(3):797-806 - PubMed
  28. Aging Cell. 2016 Feb;15(1):187-91 - PubMed
  29. Exp Cell Res. 2005 Sep 10;309(1):229-38 - PubMed
  30. J Biol Chem. 2008 Dec 19;283(51):35622-9 - PubMed
  31. Nat Cell Biol. 2004 Feb;6(2):154-61 - PubMed
  32. Cell Rep. 2016 May 24;15(8):1660-72 - PubMed
  33. Nat Rev Mol Cell Biol. 2014 Apr;15(4):273-88 - PubMed
  34. Int J Cell Biol. 2012;2012:310616 - PubMed
  35. Nat Med. 2013 Oct;19(10 ):1281-7 - PubMed
  36. Am J Pathol. 2014 Aug;184(8):2146-53 - PubMed
  37. Nat Cell Biol. 2015 Nov;17 (11):1412-21 - PubMed

Publication Types