Display options
Share it on

Neural Regen Res. 2017 Jul;12(7):1062-1067. doi: 10.4103/1673-5374.211180.

Using induced pluripotent stem cells derived neurons to model brain diseases.

Neural regeneration research

Cindy E McKinney

Affiliations

  1. iPSC Lab/Edward Via College of Osteopathic Medicine and The Gibbs Research Institute, Spartanburg, SC, USA.

PMID: 28852383 PMCID: PMC5558480 DOI: 10.4103/1673-5374.211180

Abstract

The ability to use induced pluripotent stem cells (iPSC) to model brain diseases is a powerful tool for unraveling mechanistic alterations in these disorders. Rodent models of brain diseases have spurred understanding of pathology but the concern arises that they may not recapitulate the full spectrum of neuron disruptions associated with human neuropathology. iPSC derived neurons, or other neural cell types, provide the ability to access pathology in cells derived directly from a patient's blood sample or skin biopsy where availability of brain tissue is limiting. Thus, utilization of iPSC to study brain diseases provides an unlimited resource for disease modelling but may also be used for drug screening for effective therapies and may potentially be used to regenerate aged or damaged cells in the future. Many brain diseases across the spectrum of neurodevelopment, neurodegenerative and neuropsychiatric are being approached by iPSC models. The goal of an iPSC based disease model is to identify a cellular phenotype that discriminates the disease-bearing cells from the control cells. In this mini-review, the importance of iPSC cell models validated for pluripotency, germline competency and function assessments is discussed. Selected examples for the variety of brain diseases that are being approached by iPSC technology to discover or establish the molecular basis of the neuropathology are discussed.

Keywords: brain diseases; induced pluripotent stem cells; molecular mechanisms; neuron cell models; therapeutics; translational medicine

Conflict of interest statement

Conflicts of interest: None declared.

References

  1. Ann Neurol. 2013 Sep;74(3):309-16 - PubMed
  2. Stem Cell Reports. 2017 Mar 14;8(3):648-658 - PubMed
  3. EMBO Mol Med. 2012 May;4(5):380-95 - PubMed
  4. Mol Genet Metab. 2014 May;112(1):44-8 - PubMed
  5. Mol Cell Neurosci. 2013 Jul;55:44-9 - PubMed
  6. Annu Rev Neurosci. 2014;37:479-501 - PubMed
  7. Curr Stem Cell Res Ther. 2016;11(4):301-12 - PubMed
  8. Stem Cell Investig. 2016 Sep 28;3:52 - PubMed
  9. Stem Cell Reports. 2015 May 12;4(5):835-46 - PubMed
  10. Neurotherapeutics. 2015 Jul;12(3):534-45 - PubMed
  11. EMBO Mol Med. 2015 Oct 29;7(12 ):1529-46 - PubMed
  12. Mol Brain. 2016 Sep 19;9(1):85 - PubMed
  13. Stem Cell Res. 2015 Nov;15(3):731-41 - PubMed
  14. Rare Dis. 2015 Jul 15;3(1):e1068978 - PubMed
  15. Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2725-34 - PubMed
  16. Int J Mol Sci. 2017 May 01;18(5):null - PubMed
  17. Neurobiol Dis. 2012 Apr;46(1):19-29 - PubMed
  18. Brain Res. 1995 Apr 3;676(1):196-204 - PubMed
  19. Hum Mol Genet. 2004 Dec 1;13(23):2893-906 - PubMed
  20. Stem Cell Reports. 2017 Apr 11;8(4):856-869 - PubMed
  21. PLoS One. 2013 Oct 03;8(10):e75682 - PubMed
  22. Curr Protoc Stem Cell Biol. 2015 Feb 02;32:4A.8.1-17 - PubMed
  23. PLoS One. 2012;7(3):e32632 - PubMed
  24. Mol Psychiatry. 2015 Nov;20(11):1350-65 - PubMed
  25. Neuropathol Appl Neurobiol. 2015 Feb;41(2):227-44 - PubMed
  26. Nat Rev Neurol. 2011 Oct 11;7(11):603-15 - PubMed
  27. Acta Neuropathol. 2013 Sep;126(3):385-99 - PubMed
  28. Lancet. 2009 Jun 13;373(9680):2055-66 - PubMed
  29. Am J Hum Genet. 2012 Apr 6;90(4):579-90 - PubMed
  30. Lancet Neurol. 2010 Aug;9(8):793-806 - PubMed
  31. Philos Trans R Soc Lond B Biol Sci. 2008 Jun 27;363(1500):2079-87 - PubMed
  32. Hum Mol Genet. 2014 Apr 15;23(8):2005-22 - PubMed
  33. Orphanet J Rare Dis. 2013 Sep 18;8:144 - PubMed

Publication Types