Display options
Share it on

Sci Rep. 2017 Oct 02;7(1):12553. doi: 10.1038/s41598-017-12857-8.

Role of the particle size polydispersity in the electrical conductivity of carbon nanotube-epoxy composites.

Scientific reports

Maryam Majidian, Claudio Grimaldi, László Forró, Arnaud Magrez

Affiliations

  1. Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne, Station 3, CH-1015, Lausanne, Switzerland.
  2. Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne, Station 3, CH-1015, Lausanne, Switzerland. [email protected].
  3. Crystal Growth Facility, Ecole Polytechnique Fédérale de Lausanne, Station 3, CH-1015, Lausanne, Switzerland.

PMID: 28970524 PMCID: PMC5624922 DOI: 10.1038/s41598-017-12857-8

Abstract

Carbon nanotubes (CTNs) with large aspect-ratios are extensively used to establish electrical connectedness in polymer melts at very low CNT loadings. However, the CNT size polydispersity and the quality of the dispersion are still not fully understood factors that can substantially alter the desired characteristics of CNT nanocomposites. Here we demonstrate that the electrical conductivity of polydisperse CNT-epoxy composites with purposely-tailored distributions of the nanotube length L is a quasiuniversal function of the first moment of L. This finding challenges the current understanding that the conductivity depends upon higher moments of the CNT length. We explain the observed quasiuniversality by a combined effect between the particle size polydispersity and clustering. This mechanism can be exploited to achieve controlled tuning of the electrical transport in general CNT nanocomposites.

References

  1. Phys Rev Lett. 2009 Nov 27;103(22):225704 - PubMed
  2. J Chem Phys. 2012 Apr 28;136(16):164903 - PubMed
  3. Nanotechnology. 2012 Oct 12;23(40):405202 - PubMed
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062312 - PubMed
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012126 - PubMed
  6. J Chem Phys. 2013 Dec 14;139(22):224904 - PubMed
  7. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8221-6 - PubMed
  8. Adv Mater. 2010 Apr 18;22(15):1672-88 - PubMed
  9. J Chem Phys. 2011 Mar 7;134(9):094902 - PubMed
  10. J Chem Phys. 2010 Jun 14;132(22):224905 - PubMed
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042140 - PubMed
  12. J Chem Phys. 2015 Jul 28;143(4):044901 - PubMed
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032121 - PubMed
  14. Phys Rev Lett. 2013 Jan 4;110(1):015701 - PubMed
  15. J Chem Phys. 2012 Oct 7;137(13):134903 - PubMed
  16. Phys Rev Lett. 1985 Apr 1;54(13):1412-1415 - PubMed

Publication Types