Display options
Share it on

Alzheimers Dement (Amst). 2017 Sep 14;9:41-50. doi: 10.1016/j.dadm.2017.07.005. eCollection 2017.

Entorhinal and transentorhinal atrophy in mild cognitive impairment using longitudinal diffeomorphometry.

Alzheimer's & dementia (Amsterdam, Netherlands)

Daniel J Tward, Chelsea S Sicat, Timothy Brown, Arnold Bakker, Michela Gallagher, Marilyn Albert, Michael Miller

Affiliations

  1. Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA.
  2. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
  3. Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA.
  4. Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD, USA.
  5. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  6. Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.

PMID: 28971142 PMCID: PMC5608074 DOI: 10.1016/j.dadm.2017.07.005

Abstract

INTRODUCTION: Autopsy findings have shown the entorhinal cortex and transentorhinal cortex are among the earliest sites of accumulation of pathology in patients developing Alzheimer's disease.

METHODS: Here, we study this region in subjects with mild cognitive impairment (

RESULTS: We find significant thickness and volume changes localized to the transentorhinal cortex through high field strength atlasing.

DISCUSSION: This demonstrates that in vivo neuroimaging biomarkers can detect these early changes among subjects with mild cognitive impairment.

Keywords: Braak staging; Diffeomorphometry; Entorhinal cortex; Longitudinal analysis; Mild cognitive impairment; Shape analysis

References

  1. Eur J Neurosci. 2012 Apr;35(8):1295-311 - PubMed
  2. Cereb Cortex. 1997 Dec;7(8):722-31 - PubMed
  3. Neurology. 2007 Mar 13;68(11):828-36 - PubMed
  4. Annu Rev Biomed Eng. 2015;17:447-509 - PubMed
  5. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1195-1208 - PubMed
  6. Med Image Comput Comput Assist Interv. 2016 Oct;9901:564-571 - PubMed
  7. Neuroimage. 2012 Apr 15;60(3):1622-9 - PubMed
  8. Ann Neurol. 2009 Apr;65(4):403-13 - PubMed
  9. J Neurosci. 2012 Nov 14;32(46):16265-73 - PubMed
  10. Dement Geriatr Cogn Disord. 2011;31(4):276-83 - PubMed
  11. Alzheimers Dement. 2011 May;7(3):257-62 - PubMed
  12. Arch Neurol. 1999 Mar;56(3):303-8 - PubMed
  13. Acta Neuropathol. 1991;82(4):239-59 - PubMed
  14. Int J Biomed Imaging. 2010;2010:null - PubMed
  15. Neuroimage Clin. 2014 Apr 21;5:178-87 - PubMed
  16. J Math Imaging Vis. 2006 Jan 31;24(2):209-228 - PubMed
  17. NeuroRx. 2004 Apr;1(2):196-205 - PubMed
  18. Int J Comput Vis. 2013 May;103(1):22-59 - PubMed
  19. Alzheimers Dement. 2015 Jun;11(6):e1-120 - PubMed
  20. Ann Neurol. 2001 Feb;49(2):202-13 - PubMed
  21. Stat Methods Med Res. 2003 Oct;12(5):419-46 - PubMed
  22. Neuroimage Clin. 2013 Sep 16;3:352-60 - PubMed
  23. J Intern Med. 2004 Sep;256(3):183-94 - PubMed
  24. J Neurosci. 1996 Jul 15;16(14):4491-500 - PubMed
  25. Alzheimer Dis Assoc Disord. 2003 Jul-Sep;17(3):177-95 - PubMed
  26. Neuroimage. 2012 Oct 15;63(1):194-202 - PubMed
  27. Alzheimers Dement. 2011 May;7(3):270-9 - PubMed
  28. Arch Neurol. 2001 Sep;58(9):1395-402 - PubMed
  29. AJNR Am J Neuroradiol. 1998 Apr;19(4):659-71 - PubMed
  30. Hum Brain Mapp. 2010 Sep;31(9):1359-79 - PubMed
  31. Neurobiol Aging. 2017 Jan;49:204-213 - PubMed
  32. Neuroimage. 2012 Jul 16;61(4):1402-18 - PubMed
  33. Neuroimage. 2008 Aug 1;42(1):252-61 - PubMed
  34. Front Bioeng Biotechnol. 2015 May 15;3:54 - PubMed

Publication Types

Grant support