Display options
Share it on

Front Microbiol. 2017 Aug 24;8:1605. doi: 10.3389/fmicb.2017.01605. eCollection 2017.

A Structural and Functional Elucidation of the Rumen Microbiome Influenced by Various Diets and Microenvironments.

Frontiers in microbiology

Simon Deusch, Amélia Camarinha-Silva, Jürgen Conrad, Uwe Beifuss, Markus Rodehutscord, Jana Seifert

Affiliations

  1. Department of Feed-Gut Microbiota Interaction, Institute of Animal Science, University of HohenheimStuttgart, Germany.
  2. Department of Bioorganic Chemistry, Institute of Chemistry, University of HohenheimStuttgart, Germany.

PMID: 28883813 PMCID: PMC5573736 DOI: 10.3389/fmicb.2017.01605

Abstract

The structure and function of the microbiome inhabiting the rumen are, amongst other factors, mainly shaped by the animal's feed intake. Describing the influence of different diets on the inherent community arrangement and associated metabolic activities of the most active ruminal fractions (bacteria and archaea) is of great interest for animal nutrition, biotechnology, and climatology. Samples were obtained from three fistulated Jersey cows rotationally fed with corn silage, grass silage or grass hay, each supplemented with a concentrate mixture. Samples were fractionated into ruminal fluid, particle-associated rumen liquid, and solid matter. DNA, proteins and metabolites were analyzed subsequently. DNA extracts were used for Illumina sequencing of the 16S rRNA gene and the metabolomes of rumen fluids were determined by 500 MHz-NMR spectroscopy. Tryptic peptides derived from protein extracts were measured by LC-ESI-MS/MS and spectra were processed by a two-step database search for quantitative metaproteome characterization. Data are available via ProteomeXchange with the identifier PXD006070. Protein- and DNA-based datasets revealed significant differences between sample fractions and diets and affirmed similar trends concerning shifts in phylogenetic composition. Ribosomal genes and proteins belonging to the phylum of Proteobacteria, particularly Succinivibrionaceae, exhibited a higher abundance in corn silage-based samples while fiber-degraders of the Lachnospiraceae family emerged in great quantities throughout the solid phase fractions. The analysis of 8163 quantified bacterial proteins revealed the presence of 166 carbohydrate active enzymes in varying abundance. Cellulosome affiliated proteins were less expressed in the grass silage, glycoside hydrolases appeared in slightest numbers in the corn silage. Most expressed glycoside hydrolases belonged to families 57 and 2. Enzymes analogous to ABC transporters for amino acids and monosaccharides were more abundant in the corn silage whereas oligosaccharide transporters showed a higher abundance in the fiber-rich diets. Proteins involved in carbon metabolism were detected in high numbers and identification of metabolites like short-chain fatty acids, methylamines and phenylpropionate by NMR enabled linkage between producers and products. This study forms a solid basis to retrieve deeper insight into the complex network of microbial adaptation in the rumen.

Keywords: 16S rRNA gene; CAZy; LC-ESI-MS/MS; NMR; dietary impact; metaproteomics; rumen microbiome

References

  1. Anaerobe. 2004 Dec;10(6):313-9 - PubMed
  2. Arch Microbiol. 1980 Sep;127(2):145-56 - PubMed
  3. Rapid Commun Mass Spectrom. 2008 Sep;22(18):2889-97 - PubMed
  4. J Dairy Sci. 2001 Jun;84(6):1294-309 - PubMed
  5. Appl Environ Microbiol. 2012 Jan;78(2):511-8 - PubMed
  6. Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56 - PubMed
  7. PLoS One. 2012;7(3):e33306 - PubMed
  8. Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2682-6 - PubMed
  9. Front Microbiol. 2017 Feb 17;8:226 - PubMed
  10. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 - PubMed
  11. Curr Microbiol. 2013 Aug;67(2):130-7 - PubMed
  12. PLoS One. 2013 Sep 11;8(9):e74787 - PubMed
  13. FEMS Microbiol Lett. 2003 Dec 5;229(1):23-30 - PubMed
  14. Nat Protoc. 2007;2(8):1896-906 - PubMed
  15. Plant Physiol. 1991 Apr;95(4):1113-9 - PubMed
  16. J Dairy Sci. 1996 Aug;79(8):1467-75 - PubMed
  17. Antonie Van Leeuwenhoek. 1972;38(2):153-61 - PubMed
  18. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 - PubMed
  19. Int J Syst Evol Microbiol. 2011 Oct;61(Pt 10):2520-4 - PubMed
  20. Science. 2001 May 11;292(5519):1119-22 - PubMed
  21. BMC Genomics. 2015 Oct 23;16:839 - PubMed
  22. PLoS One. 2012;7(6):e38134 - PubMed
  23. Antonie Van Leeuwenhoek. 2004 Oct;86(3):263-81 - PubMed
  24. J Proteome Res. 2009 Sep;8(9):4173-81 - PubMed
  25. Microbiologyopen. 2016 Feb;5(1):70-82 - PubMed
  26. Anaerobe. 1998 Jun;4(3):153-63 - PubMed
  27. PLoS One. 2013 Dec 31;8(12):e83424 - PubMed
  28. J Bacteriol. 2010 Nov;192(22):5953-61 - PubMed
  29. Appl Environ Microbiol. 1990 Dec;56(12):3867-70 - PubMed
  30. Appl Microbiol Biotechnol. 2005 Feb;66(5):465-74 - PubMed
  31. J Bacteriol. 1956 Jul;72(1):16-21 - PubMed
  32. Comput Struct Biotechnol J. 2014 Dec 24;13:55-63 - PubMed
  33. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 - PubMed
  34. Sci Rep. 2015 Oct 09;5:14567 - PubMed
  35. FEMS Microbiol Ecol. 2007 Dec;62(3):313-22 - PubMed
  36. Bioinformatics. 2011 Aug 15;27(16):2194-200 - PubMed
  37. Appl Environ Microbiol. 1995 Dec;61(12):4396-402 - PubMed
  38. FEMS Microbiol Ecol. 2011 Nov;78(2):256-65 - PubMed
  39. Appl Environ Microbiol. 2010 Nov;76(22):7482-90 - PubMed
  40. Proteomics. 2013 Oct;13(18-19):2786-804 - PubMed
  41. J Bacteriol. 1956 Oct;72(4):548-54 - PubMed
  42. PLoS One. 2016 May 02;11(5):e0154354 - PubMed
  43. J Nutr. 1977 Nov;107(11):2036-43 - PubMed
  44. FEMS Microbiol Ecol. 2011 Apr;76(1):49-63 - PubMed
  45. Anaerobe. 2016 Dec;42:6-16 - PubMed
  46. PLoS One. 2014 Jul 31;9(7):e103171 - PubMed
  47. Anaerobe. 1997 Dec;3(6):373-81 - PubMed
  48. Br J Nutr. 1989 May;61(3):725-40 - PubMed
  49. Proteomics. 2015 Oct;15(20):3590-5 - PubMed
  50. Int J Syst Bacteriol. 1995 Apr;45(2):297-300 - PubMed
  51. J Anim Sci. 2005 Mar;83(3):653-61 - PubMed
  52. Environ Microbiol. 2005 Apr;7(4):530-43 - PubMed
  53. J Gen Appl Microbiol. 2012;58(2):107-12 - PubMed
  54. Science. 2008 Jun 20;320(5883):1647-51 - PubMed
  55. Appl Environ Microbiol. 1993 Jul;59(7):2077-81 - PubMed
  56. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 - PubMed
  57. ISME J. 2016 Dec;10 (12 ):2958-2972 - PubMed
  58. Animal. 2013 Mar;7 Suppl 1:49-56 - PubMed
  59. Proteomics. 2014 Nov;14(21-22):2535-9 - PubMed
  60. Anal Chem. 2013 May 7;85(9):4203-14 - PubMed
  61. PLoS One. 2014 Jan 22;9(1):e85423 - PubMed
  62. PLoS One. 2013 Dec 09;8(12):e82981 - PubMed
  63. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  64. J Anim Sci. 2011 Apr;89(4):1120-30 - PubMed
  65. Microbiome. 2016 Oct 19;4(1):56 - PubMed
  66. Met Ions Life Sci. 2014;14:125-45 - PubMed
  67. Appl Environ Microbiol. 2001 Jun;67(6):2766-74 - PubMed
  68. Expert Rev Proteomics. 2016 Aug;13(8):757-69 - PubMed
  69. J Sci Food Agric. 2014 Jul;94(9):1886-95 - PubMed
  70. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 - PubMed
  71. Microb Ecol. 2010 Apr;59(3):511-22 - PubMed
  72. Lett Appl Microbiol. 2001 Aug;33(2):159-63 - PubMed
  73. Appl Environ Microbiol. 2008 Jun;74(12):3619-25 - PubMed
  74. Appl Environ Microbiol. 2012 Sep;78(17):5983-93 - PubMed
  75. J Bacteriol. 1956 Aug;72(2):162-7 - PubMed
  76. Biochem J. 1978 Mar 15;170(3):529-35 - PubMed
  77. Microb Ecol. 2010 Nov;60(4):721-9 - PubMed
  78. Lancet. 2007 Oct 6;370(9594):1253-63 - PubMed
  79. J Dairy Sci. 2015 Mar;98(3):1915-27 - PubMed
  80. Appl Microbiol. 1961 Mar;9(2):175-80 - PubMed
  81. J Anim Sci. 1994 Nov;72(11):3004-18 - PubMed
  82. Microb Biotechnol. 2014 Sep;7(5):467-79 - PubMed
  83. N Biotechnol. 2013 Sep 25;30(6):614-22 - PubMed
  84. Appl Environ Microbiol. 1992 Jan;58(1):48-54 - PubMed
  85. J Dairy Sci. 2010 Apr;93(4):1320-34 - PubMed
  86. Nat Commun. 2013;4:1428 - PubMed
  87. FEMS Microbiol Ecol. 2010 Dec;74(3):612-22 - PubMed
  88. Appl Environ Microbiol. 2015 Feb;81(3):986-95 - PubMed
  89. Bacteriol Rev. 1950 Mar;14(1):1-49 - PubMed
  90. Appl Environ Microbiol. 1984 Jul;48(1):218-23 - PubMed
  91. BMC Genomics. 2011 Sep 07;12:444 - PubMed
  92. Ann N Y Acad Sci. 2008 Mar;1125:171-89 - PubMed
  93. Microbiome. 2016 Sep 27;4(1):51 - PubMed
  94. Front Microbiol. 2017 Mar 07;8:385 - PubMed
  95. J Dairy Sci. 2012 Nov;95(11):6606-23 - PubMed
  96. Appl Environ Microbiol. 2012 Jul;78(14):4949-58 - PubMed
  97. Genes Nutr. 2011 Aug;6(3):285-306 - PubMed
  98. Science. 2011 Jan 28;331(6016):463-7 - PubMed
  99. J Proteome Res. 2010 Dec 3;9(12):6615-22 - PubMed
  100. Environ Microbiol. 2014 Sep;16(9):2939-52 - PubMed
  101. J Bacteriol. 1958 Jul;76(1):15-23 - PubMed
  102. J Anim Sci. 1979 Sep;49(3):764-74 - PubMed
  103. Curr Microbiol. 2000 Jul;41(1):45-9 - PubMed
  104. PLoS One. 2015 Jul 30;10(7):e0133234 - PubMed
  105. Bacteriol Rev. 1959 Sep;23(3):125-53 - PubMed
  106. Annu Rev Microbiol. 1964;18:131-66 - PubMed
  107. Front Microbiol. 2016 Jun 22;7:987 - PubMed
  108. Appl Environ Microbiol. 2015 Dec 28;82(5):1569-76 - PubMed
  109. Integr Comp Biol. 2002 Apr;42(2):319-26 - PubMed
  110. Proteomics. 2013 Apr;13(8):1352-7 - PubMed
  111. J Anim Sci. 2012 Nov;90(11):3924-36 - PubMed
  112. Anal Chem. 2006 Jul 1;78(13):4430-42 - PubMed
  113. Curr Opin Biotechnol. 2012 Jun;23(3):491-500 - PubMed
  114. Arch Microbiol. 1979 Sep;122(3):231-9 - PubMed

Publication Types