Display options
Share it on

Transl Cancer Res. 2016 Dec;5(6):692-697. doi: 10.21037/tcr.2016.11.76.

Regulation of cytotoxic T-cell responses by p53 in cancer.

Translational cancer research

Mitchell W Braun, Tomoo Iwakuma

Affiliations

  1. Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.

PMID: 28944167 PMCID: PMC5607642 DOI: 10.21037/tcr.2016.11.76

Abstract

An intriguing aspect of the tumor suppressor p53 is its ability to communicate to the adaptive immune system and control the cytotoxic T-lymphocyte (CTL) response to cancer cells. Wild-type p53 (wtp53) communicates with CTLs through proteins involved in the major histocompatibility complex (MHC) class I antigen presentation pathway [e.g., transporter associated with antigen processing 1 (TAP1) and endoplasmic reticulum amino peptidase 1 (ERAP1)], the apoptosis signal receptor Fas/APO-1, and the inhibitory immune-checkpoint programmed death-ligand 1 (PD-L1). The presence of wtp53 in cancer cells ultimately promotes effector CTL-induced tumor cell death. Analogously, wtp53 in tumors unleashes the CTL response via inhibition of PD-L1 and enhances their effectiveness by upregulating Fas/APO-1 and MHC I. Given that p53 is mutated in approximately 50% of human cancers and also impacts the immunoreactivity of cancer cells, a significant number of patients can be affected by the impaired CTL response that results from non-functional p53. An attenuated CTL response due to p53 mutations could decrease response rates to immunotherapeutic drugs, leading to poor patient prognoses. This review article will summarize how p53 can regulate the cell-mediated adaptive immune response to cancer.

Keywords: Cytotoxic T-lymphocytes (CTLs); Fas/APO-1; major histocompatibility complex (MHC); p53; programmed death-ligand 1 (PD-L1)

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

  1. Nat Rev Clin Oncol. 2011 Jan;8(1):25-37 - PubMed
  2. Oncogene. 2007 Apr 2;26(15):2177-84 - PubMed
  3. Cell Signal. 2015 Mar;27(3):443-52 - PubMed
  4. J Exp Med. 2006 Mar 20;203(3):647-59 - PubMed
  5. Clin Cancer Res. 2009 Feb 1;15(3):971-9 - PubMed
  6. Prog Mol Biol Transl Sci. 2012;109:75-112 - PubMed
  7. J Natl Cancer Inst. 2015 Nov 17;108(1):null - PubMed
  8. J Natl Cancer Inst. 2013 Aug 21;105(16):1172-87 - PubMed
  9. Lung Cancer. 2016 Sep;99:79-87 - PubMed
  10. Mol Cell. 2007 Jun 8;26(5):745-52 - PubMed
  11. Cold Spring Harb Symp Quant Biol. 1994;59:277-86 - PubMed
  12. Trends Cell Biol. 2007 Jun;17(6):286-91 - PubMed
  13. J Biol Chem. 1999 Feb 5;274(6):3363-71 - PubMed
  14. Nat Commun. 2013;4:2359 - PubMed
  15. Eur J Cell Biol. 2011 Jun-Jul;90(6-7):456-66 - PubMed
  16. Mol Cell. 2007 Jun 8;26(5):731-43 - PubMed
  17. J Immunol. 1996 Apr 1;156(7):2361-4 - PubMed
  18. J Immunol. 2005 Jan 15;174(2):871-8 - PubMed
  19. Hum Gene Ther. 1998 Mar 20;9(5):707-18 - PubMed
  20. Oncogene. 1999 Dec 16;18(54):7740-7 - PubMed
  21. Cell. 1997 Oct 31;91(3):325-34 - PubMed
  22. Mol Immunol. 2014 Jan;57(1):12-21 - PubMed
  23. Mol Cell Biol. 1995 Jun;15(6):3032-40 - PubMed
  24. Cancer Immunol Immunother. 2007 Aug;56(8):1173-82 - PubMed
  25. Mol Cancer Res. 2003 Dec;1(14 ):993-1000 - PubMed

Publication Types

Grant support