Display options
Share it on

Oncoimmunology. 2017 Jun 14;6(8):e1338238. doi: 10.1080/2162402X.2017.1338238. eCollection 2017.

Zoledronic acid inhibits NFAT and IL-2 signaling pathways in regulatory T cells and diminishes their suppressive function in patients with metastatic cancer.

Oncoimmunology

Dhifaf Sarhan, Caroline Leijonhufvud, Shannon Murray, Kristina Witt, Christina Seitz, Majken Wallerius, Hanjing Xie, Anders Ullén, Ulrika Harmenberg, Elisabet Lidbrink, Charlotte Rolny, John Andersson, Andreas Lundqvist

Affiliations

  1. Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  2. University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA.
  3. Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  4. Cell Therapy Institute, Nova Southeastern University, FL, USA.
  5. Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  6. Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden.
  7. Division of Radiotherapy, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden.

PMID: 28920001 PMCID: PMC5593706 DOI: 10.1080/2162402X.2017.1338238

Abstract

Regulatory T cells (Treg) suppress anti-tumor immune responses and their infiltration in the tumor microenvironment is associated with inferior prognosis in cancer patients. Thus, in order to enhance anti-tumor immune responses, selective depletion of Treg is highly desired. We found that treatment with zoledronic acid (ZA) resulted in a selective decrease in the frequency of Treg that was associated with a significant increase in proliferation of T cells and natural killer (NK) cells in peripheral blood of patients with metastatic cancer. In vitro, genome-wide transcriptomic analysis revealed alterations in calcium signaling pathways in Treg following treatment with ZA. Furthermore, co-localization of the nuclear factor of activated T cells (NFAT) and forkhead box P3 (FOXP3) was significantly reduced in Treg upon ZA-treatment. Consequently, reduced expression levels of CD25, STAT5 and TGFβ were observed. Functionally, ZA-treated Treg had reduced capacity to suppress T and NK cell proliferation and anti-tumor responses compared with untreated Treg in vitro. Treatment with ZA to selectively inhibit essential signaling pathways in Treg resulting in reduced capacity to suppress effector T and NK cell responses represents a novel approach to inhibit Treg activity in patients with cancer.

Keywords: Ca2+/calcineurin/NFAT pathway; NK and T cell function; Zoledronic acid; cancer patients; regulatory T cells

References

  1. Ann Oncol. 2008 Mar;19(3):420-32 - PubMed
  2. Anticancer Res. 2014 Aug;34(8):4415-20 - PubMed
  3. J Vis Exp. 2011 Sep 09;(55):null - PubMed
  4. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  5. Blood. 2006 Aug 1;108(3):804-11 - PubMed
  6. Blood. 2006 Jul 1;108(1):390-9 - PubMed
  7. J Clin Invest. 2015 Sep;125(9):3356-64 - PubMed
  8. Nat Med. 2016 Jun;22(6):679-84 - PubMed
  9. MAbs. 2016 Oct;8(7):1417-1424 - PubMed
  10. Int J Clin Oncol. 2013 Jun;18(3):472-7 - PubMed
  11. Blood. 2014 Jun 19;123(25):3855-63 - PubMed
  12. J Immunol. 2011 Aug 15;187(4):1578-90 - PubMed
  13. Cell Immunol. 2007 Oct;249(2):63-72 - PubMed
  14. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  15. J Clin Oncol. 2016 Oct 1;34(28):3400-8 - PubMed
  16. Cytotherapy. 2008;10(8):842-56 - PubMed
  17. Clin Lung Cancer. 2011 Jan;12(1):26-32 - PubMed
  18. J Immunol. 2007 Feb 1;178(3):1251-5 - PubMed
  19. Cancer Lett. 2016 May 28;375(1):162-171 - PubMed
  20. BMC Immunol. 2016 Nov 25;17 (1):45 - PubMed
  21. J Exp Med. 2005 Apr 4;201(7):1061-7 - PubMed
  22. J Biol Chem. 2005 May 6;280(18):18056-62 - PubMed
  23. Sci Transl Med. 2012 May 16;4(134):134ra62 - PubMed
  24. PLoS One. 2014 Mar 11;9(3):e90353 - PubMed
  25. Cancer Immunol Immunother. 2014 Nov;63(11):1177-87 - PubMed
  26. Oncotarget. 2017 Jan 3;8(1):118-132 - PubMed
  27. Cancer Immunol Immunother. 2007 May;56(5):641-8 - PubMed
  28. J Exp Med. 2013 Jun 3;210(6):1167-78 - PubMed
  29. Trends Immunol. 2007 Aug;28(8):329-32 - PubMed
  30. J Pharmacol Exp Ther. 2016 Oct;359(1):54-61 - PubMed
  31. Immunol Lett. 2010 Aug 16;132(1-2):61-8 - PubMed
  32. Adv Cancer Res. 2010;107:57-117 - PubMed
  33. Biomed Res Int. 2015;2015:430943 - PubMed
  34. BJU Int. 2011 May;107(9):1500-6 - PubMed
  35. J Natl Cancer Inst. 2004 Jun 2;96(11):879-82 - PubMed
  36. Br J Cancer. 2015 Sep 1;113(5):747-55 - PubMed
  37. Cancer Immunol Immunother. 2014 Apr;63(4):395-406 - PubMed
  38. Eur J Immunol. 2013 Jan;43(1):249-57 - PubMed
  39. Autoimmunity. 2010 Jun;43(4):299-307 - PubMed
  40. Cancer Res. 2015 Jun 1;75(11):2200-10 - PubMed
  41. Microbes Infect. 2009 Apr;11(5):612-9 - PubMed
  42. Cell. 2006 Jul 28;126(2):375-87 - PubMed
  43. J Immunol. 2016 Jan 15;196(2):759-66 - PubMed
  44. J Immunol. 2013 Aug 1;191(3):1346-55 - PubMed

Publication Types