Display options
Share it on

ACS Nano. 2017 Oct 24;11(10):10281-10288. doi: 10.1021/acsnano.7b04960. Epub 2017 Oct 02.

Transition-Metal Decorated Aluminum Nanocrystals.

ACS nano

Dayne F Swearer, Rowan K Leary, Ryan Newell, Sadegh Yazdi, Hossein Robatjazi, Yue Zhang, David Renard, Peter Nordlander, Paul A Midgley, Naomi J Halas, Emilie Ringe

Affiliations

  1. Department of Materials Science and Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.

PMID: 28945360 DOI: 10.1021/acsnano.7b04960

Abstract

Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

Keywords: aluminum; antenna-reactor; electron tomography; nanomaterials; photocatalysis; plasmonics

Publication Types