Display options
Share it on

J Anesth. 1994 Jun;8(2):213-218. doi: 10.1007/BF02514716.

Effects of biogenic amines and intravenous anesthetics on the activity of rat locus coeruleus neurons in vitro.

Journal of anesthesia

Yoshihiro Ohta, Takeyasu Yamamura, Elena Santos Alojado, Osamu Kemmotsu

Affiliations

  1. Department of Anesthesiology and Intensive Care, Hokkaido University School of Medicine, N15W7 Kitaku, 060, Sapporo, Japan.

PMID: 28921147 DOI: 10.1007/BF02514716

Abstract

To examine the effects of biogenic amines and clinically relevant concentrations of intravenous anesthetics on neuronal activities, the authors analyzed both spontaneous and evoked activities of neurons in the nucleus locus coeruleus (LC)in vitro using a single unit recording technique. Spontaneous firing was observed in 37% (14/38) of LC neurons, andN-methyl-D-aspartate (NMDA, 50 μM), glutamate (250 μM), and carbachol (1-2 mM) elicited firing in 100% (38/38), 63% (12/19), and 58% (7/12) of silent LC neurons respectively. Noradrenaline (50 μM) and serotonin (5-HT) (1-5 μM) suppressed spontaneous and drug-induced activities in 47% (15/32) and 23% (8/35) of LC neurons, respectively. Pentobarbital (100 μM) inhibited 50% (5/10) of LC neurons. All neurons activated by NMDA (n=8) and glutamate (n-3) were suppressed by ketamine (40 μM), but fentanyl (1 μM) only suppressed 60% (3/5) of spontaneously active and 75% (3/4) of glutamate-activated neurons. Identical LC neurons were inhibited by various combinations of noradrenaline, 5-HT, pentobarbital, ketamine, and fentanyl. The results suggest that clinically relevant concentrations of anesthetics and opioids modulate the activity of LC neurons induced by biogenic amines, excitatory amino acids, and acetylcholine.

Keywords: Carbachol; Fentanyl; Glutamate; Ketamine; N-methyl-D-aspartate; Noradrenaline; Nucleus locus coeruleus; Peptobarbital; Rat; Serotonin

References

  1. J Comp Neurol. 1991 Apr 15;306(3):480-94 - PubMed
  2. Brain Res. 1989 May 29;488(1-2):126-34 - PubMed
  3. J Neurosci. 1985 Sep;5(9):2359-64 - PubMed
  4. Physiol Rev. 1983 Jul;63(3):844-914 - PubMed
  5. Science. 1978 May 19;200(4343):775-7 - PubMed
  6. Brain Res. 1991 Jan 11;538(2):231-45 - PubMed
  7. Neuropharmacology. 1987 Jul;26(7B):793-9 - PubMed
  8. Brain Res. 1986 Apr 23;371(2):390-4 - PubMed
  9. Acta Physiol Scand Suppl. 1971;367:1-48 - PubMed
  10. J Neurosci. 1991 Mar;11(3):760-9 - PubMed
  11. Anesthesiology. 1992 Jun;76(6):873-5 - PubMed
  12. Neuroscience. 1991;41(2-3):525-42 - PubMed
  13. Neurosci Lett. 1988 Apr 12;86(3):334-9 - PubMed
  14. Neuroscience. 1992 Jun;48(4):941-52 - PubMed
  15. Anesthesiology. 1992 Jun;76(6):948-52 - PubMed
  16. Anesth Analg. 1979 Sep-Oct;58(5):390-5 - PubMed
  17. Can J Physiol Pharmacol. 1989 May;67(5):532-6 - PubMed
  18. Synapse. 1992 Feb;10(2):103-9 - PubMed
  19. Brain Res. 1985 Dec;355(2):301-5 - PubMed
  20. Neurosci Lett. 1986 Nov 21;71(3):299-305 - PubMed
  21. Brain Res. 1976 Jun 25;110(1):39-56 - PubMed
  22. Mol Pharmacol. 1984 Nov;26(3):489-97 - PubMed
  23. Neuropharmacology. 1983 Sep;22(9):1065-9 - PubMed
  24. Br J Pharmacol. 1985 Aug;85(4):733-5 - PubMed
  25. Brain Res. 1990 Aug 13;525(1):84-91 - PubMed
  26. Prog Neurobiol. 1977;9(3):147-96 - PubMed
  27. Anesthesiology. 1990 Apr;72(4):704-10 - PubMed
  28. Naunyn Schmiedebergs Arch Pharmacol. 1989 Mar;339(3):312-4 - PubMed
  29. Neurosci Lett. 1988 Oct 5;92(2):213-7 - PubMed

Publication Types