Display options
Share it on

Oncotarget. 2017 Jun 27;8(40):66833-66848. doi: 10.18632/oncotarget.18706. eCollection 2017 Sep 15.

Platelet-derived growth factor-C promotes human melanoma aggressiveness through activation of neuropilin-1.

Oncotarget

Federica Ruffini, Lauretta Levati, Grazia Graziani, Simona Caporali, Maria Grazia Atzori, Stefania D'Atri, Pedro M Lacal

Affiliations

  1. Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy.
  2. Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.

PMID: 28977999 PMCID: PMC5620139 DOI: 10.18632/oncotarget.18706

Abstract

Despite recent progress in advanced melanoma therapy, identification of signalling pathways involved in melanoma switch from proliferative to invasive states is still crucial to uncover new therapeutic targets for improving the outcome of metastatic disease. Neuropilin-1 (NRP-1), a co-receptor for vascular endothelial growth factor-A (VEGF-A) tyrosine kinase receptors (VEGFRs), has been suggested to play a relevant role in melanoma progression. NRP-1 can be activated by VEGF-A also in the absence of VEGFRs, triggering specific signal transduction pathways (e.g. p130Cas phosphorylation). Since melanoma cells co-expressing high levels of NRP-1 and platelet derived growth factor-C (PDGF-C) show a highly invasive behaviour and PDGF-C shares homology with VEGF-A, in this study we have investigated whether PDGF-C directly interacts with NRP-1 and promotes melanoma aggressiveness. Results demonstrate that PDGF-C specifically binds

Keywords: PDGF-C; Snail; melanoma; metastatic phenotype; neuropilin-1

Conflict of interest statement

CONFLICTS OF INTEREST The authors do not have any conflicts of interest.

References

  1. Am J Pathol. 2012 Jun;180(6):2479-89 - PubMed
  2. Mol Med Rep. 2015 Aug;12(2):2668-76 - PubMed
  3. Int J Oncol. 2016 Apr;48(4):1581-9 - PubMed
  4. J Biol Chem. 2001 Jul 6;276(27):24661-6 - PubMed
  5. Trends Mol Med. 2013 Aug;19(8):474-86 - PubMed
  6. J Biol Chem. 2003 May 9;278(19):17114-20 - PubMed
  7. Onco Targets Ther. 2016 Nov 15;9:7047-7057 - PubMed
  8. Cancer Cell. 2009 Mar 3;15(3):195-206 - PubMed
  9. Tumour Biol. 2014 Aug;35(8):7335-42 - PubMed
  10. Int J Cancer. 2015 Mar 15;136(6):E545-58 - PubMed
  11. J Cutan Pathol. 1997 Apr;24(4):212-8 - PubMed
  12. Invest New Drugs. 2014 Aug;32(4):653-60 - PubMed
  13. J Clin Oncol. 2013 Mar 20;31(9):1219-30 - PubMed
  14. Cell Death Differ. 2014 Aug;21(8):1250-61 - PubMed
  15. Biochim Biophys Acta. 2010 Mar;1804(3):567-80 - PubMed
  16. J Biol Chem. 2006 Jul 28;281(30):21321-31 - PubMed
  17. Int J Oncol. 2013 Jul;43(1):297-306 - PubMed
  18. J Biol Chem. 2014 Feb 28;289(9):6225-35 - PubMed
  19. Biochem J. 2011 May 1;435(3):609-18 - PubMed
  20. Oncol Rep. 2013 Dec;30(6):2887-96 - PubMed
  21. Trends Pharmacol Sci. 2013 Dec;34(12 ):656-66 - PubMed
  22. Oncotarget. 2010 Aug;1(4):309-314 - PubMed
  23. J Invest Dermatol. 2000 Dec;115(6):1000-7 - PubMed
  24. Cancer Res. 2002 Jul 1;62(13):3729-35 - PubMed
  25. Cell Mol Life Sci. 2016 Dec;73(24):4643-4660 - PubMed
  26. Eur J Cancer. 2008 Sep;44(13):1914-21 - PubMed
  27. Front Oncol. 2015 Jun 03;5:125 - PubMed
  28. Front Oncol. 2014 Dec 09;4:352 - PubMed
  29. Nat Rev Mol Cell Biol. 2002 Mar;3(3):155-66 - PubMed
  30. J Biol Chem. 2012 Feb 24;287(9):6218-29 - PubMed
  31. Br J Dermatol. 2011 May;164(5):1061-70 - PubMed
  32. Curr Cancer Drug Targets. 2013 Nov;13(9):963-972 - PubMed
  33. Cancer Cell. 2013 Oct 14;24(4):466-80 - PubMed
  34. Cancer Cell. 2009 Jan 6;15(1):21-34 - PubMed
  35. Eur J Cancer. 2007 Sep;43(14 ):2124-33 - PubMed
  36. J Exp Clin Cancer Res. 2014 Aug 02;33:62 - PubMed
  37. Front Oncol. 2015 Feb 13;5:31 - PubMed
  38. FASEB J. 2002 Oct;16(12):1575-83 - PubMed
  39. Mol Cell Biol. 2011 Mar;31(6):1174-85 - PubMed
  40. Nat Rev Cancer. 2002 Jun;2(6):442-54 - PubMed
  41. Cancer Res. 2007 Apr 1;67(7):3450-60 - PubMed

Publication Types