Display options
Share it on

Oncotarget. 2017 Jun 27;8(40):67355-67368. doi: 10.18632/oncotarget.18641. eCollection 2017 Sep 15.

Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device.

Oncotarget

Carlos A Aya-Bonilla, Gabriela Marsavela, James B Freeman, Chris Lomma, Markus H Frank, Muhammad A Khattak, Tarek M Meniawy, Michael Millward, Majid E Warkiani, Elin S Gray, Mel Ziman

Affiliations

  1. School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.
  2. Department of Health, Perth, Western Australia, Australia.
  3. Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  4. Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
  5. Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.
  6. School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.
  7. Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
  8. School of Mechanical and Manufacturing Engineering, Australian Center for NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia.
  9. School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia.

PMID: 28978038 PMCID: PMC5620178 DOI: 10.18632/oncotarget.18641

Abstract

Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches.

Keywords: circulating tumour cells (CTCs); metastatic melanoma; slanted spiral microfluidics

Conflict of interest statement

CONFLICTS OF INTEREST All authors, except for M.H.F., declare no conflicts of interest. M.H.F. is inventor or co-inventor of US and international patents assigned to Brigham and Women’s Hospital and/o

References

  1. J Invest Dermatol. 2011 Apr;131(4):944-55 - PubMed
  2. Science. 2015 Sep 18;349(6254):1351-6 - PubMed
  3. Nature. 2008 Jan 17;451(7176):345-9 - PubMed
  4. Analyst. 2016 Jan 21;141(2):669-78 - PubMed
  5. Biomed Microdevices. 2011 Feb;13(1):203-13 - PubMed
  6. Eur J Cancer. 2015 Jul;51(11):1435-43 - PubMed
  7. Cancer Res. 2014 Aug 1;74(15):4196-207 - PubMed
  8. Int J Cancer. 1995 Nov 3;63(3):375-80 - PubMed
  9. Cancer Cell. 2016 Mar 14;29(3):270-84 - PubMed
  10. Oncotarget. 2016 Sep 13;7(37):60101-60109 - PubMed
  11. Sci Rep. 2014 Aug 13;4:6052 - PubMed
  12. Melanoma Res. 2014 Feb;24(1):40-6 - PubMed
  13. Clin Transl Oncol. 2016 Mar;18(3):322-30 - PubMed
  14. Oncotarget. 2015 Jun 20;6(17 ):15578-93 - PubMed
  15. PLoS One. 2015 Sep 23;10 (9):e0138032 - PubMed
  16. Cell Rep. 2014 May 8;7(3):645-53 - PubMed
  17. Nat Methods. 2015 Jul;12(7):685-91 - PubMed
  18. Analyst. 2014 Jul 7;139(13):3245-55 - PubMed
  19. Dev Growth Differ. 2005 Dec;47(9):627-35 - PubMed
  20. J Transl Med. 2012 Sep 15;10:192 - PubMed
  21. Nature. 2005 Feb 24;433(7028):884-7 - PubMed
  22. Clin Biochem. 2015 Oct;48(15):999-1002 - PubMed
  23. Nat Genet. 2006 May;38(5):500-1 - PubMed
  24. J Invest Dermatol. 2015 Aug;135(8):2040-2048 - PubMed
  25. BMC Cancer. 2014 Jun 11;14 :423 - PubMed
  26. J Clin Oncol. 2015 Jun 10;33(17 ):1889-94 - PubMed
  27. PLoS One. 2010 Apr 22;5(4):e9977 - PubMed
  28. Mod Pathol. 2008 May;21(5):525-30 - PubMed
  29. Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):85-97 - PubMed
  30. Nat Rev Cancer. 2014 Sep;14 (9):623-31 - PubMed
  31. Clin Cancer Res. 2016 May 15;22(10):2583-93 - PubMed
  32. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7 - PubMed
  33. Cancer Lett. 2015 Mar 1;358(1):43-6 - PubMed
  34. N Engl J Med. 2004 Aug 19;351(8):781-91 - PubMed
  35. J Plast Reconstr Aesthet Surg. 2007;60(1):32-40 - PubMed
  36. Biochem Biophys Res Commun. 2011 Aug 12;411(4):832-7 - PubMed
  37. Lab Chip. 2014 Jan 7;14(1):128-37 - PubMed
  38. Sci Transl Med. 2013 Apr 3;5(179):179ra47 - PubMed
  39. J Invest Dermatol. 2010 Oct;130(10):2440-7 - PubMed
  40. Nat Protoc. 2014 Mar;9(3):694-710 - PubMed
  41. PLoS One. 2014 Jul 07;9(7):e99409 - PubMed
  42. J Invest Dermatol. 2013 Jun;133(6):1582-90 - PubMed
  43. PLoS One. 2015 Apr 16;10 (4):e0124154 - PubMed
  44. J Clin Oncol. 2009 Dec 20;27(36):6199-206 - PubMed
  45. Cancer Res. 1997 Aug 1;57(15):3223-9 - PubMed
  46. Science. 2014 Jul 11;345(6193):216-20 - PubMed
  47. Cancer Discov. 2016 Mar;6(3):286-99 - PubMed
  48. Sci Rep. 2016 Dec 21;6:39736 - PubMed
  49. J Clin Oncol. 2007 Apr 20;25(12):1562-9 - PubMed
  50. Nat Protoc. 2016 Jan;11(1):134-48 - PubMed
  51. PLoS One. 2012;7(5):e36762 - PubMed
  52. Br J Dermatol. 2013 Jan;168(1):85-92 - PubMed
  53. Cancer Discov. 2011 Dec;1(7):580-6 - PubMed

Publication Types

Grant support